To solve this we assume
that the gas inside the balloon is an ideal gas. Then, we can use the ideal gas
equation which is expressed as PV = nRT. At a constant pressure and number of
moles of the gas the ratio T/V is equal to some constant. At another set of
condition of temperature, the constant is still the same. Calculations are as
follows:
T1 / V1 = T2 / V2
V2 = T2 x V1 / T1
V2 =284.15 x 2.50 / 303.15
<span>V2 = 2.34 L</span>
Answer:
d. equal to one-fourth the acceleration at the surface of the asteroid.
Explanation:
The explanation is attached as a picture with this answer
Newton's law of universal gravitation is being used to compare the accelerations at the surface and at the top of the ball's path.
as it can be seen in the explanation that the proportional form of the equation is used because we do not need to necessarily use to final form with "G" for comparison calculations.
As per the given scenario only difference between the two points in the gravitational field is the distance from center of the spherical asteroid, i.e. r.
It is taken 2r for the top is the path. hence we obtain (1/4)g as our answer.
Answer:
Visible Light and Radio waves
Explanation:
The earth's atmosphere is transparent to a few windows in the electromagnetic spectrum. it is completely transparent to allow observation from the ground in visible light rang 380 to 740 nano meters. Also in the range of radio wave as communication are done from space to ground in the form of radio waves.
it is Partially transparent to Microwave and infrared range.
Answer:
1000 cm.
Explanation:
To obtain the estimated tree height :
(Height of rod / length of rod shadow) = (height of tree / length of tree shadow)
Substituting values into the formula :
(150cm / 120 cm) = (height of tree / 800 cm)
Using cross multiplication :
Height of tree * 120 = 150 * 800
Height of tree = (150 * 800) / 120
Height of tree = 120,000 / 120
Height of tree = 1000
Hence, estimate height of tree = 1000 cm