<span>Creating plasma can be dangerous because of the high amount of ENERGY needed to create it.</span>
14 ms is required to reach the potential of 1500 V.
<u>Explanation:</u>
The current is measured as the amount of charge traveling per unit time. So the charge of electrons required for each current is determined as the product of current with time.

As two different current is passing at two different times, the net charge will be the different in current. So,

The electric voltage on the surface of cylinder can be obtained as the ratio of charge to the radius of the cylinder.

Here
, q is the charge and R is the radius. As
and R =17 cm = 0.17 m, then the voltage will be

The time is required to find to reach the voltage of 1500 V, so


So, 14 ms is required to reach the potential of 1500 V.
Answer:
Conduction is the transfer of heat between substances that are in direct contact with each other. The better the conductor, the more rapidly heat will be transferred. Metal is a good conduction of heat. Conduction occurs when a substance is heated, particles will gain more energy, and vibrate more.
Answer:
H(max) = (v²/2g)
Explanation:
The maximum height the ball will climb will be when there is no friction at all on the surface of the hill.
Normally, the conservation of kinetic energy (specifically, the work-energy theorem) states that, the change in kinetic energy of a body between two points is equal to the work done in moving the body between the two points.
With no frictional force to do work, all of the initial kinetic emergy is used to climb to the maximum height.
ΔK.E = W
ΔK.E = (final kinetic energy) - (initial kinetic energy)
Final kinetic energy = 0 J, (since the body comes to rest at the height reached)
Initial kinetic energy = (1/2)(m)(v²)
Workdone in moving the body up to the height is done by gravity
W = - mgH
ΔK.E = W
0 - (1/2)(m)(v²) = - mgH
mgH = mv²/2
gH = v²/2
H = v²/2g.