Answer:
<u>Electromagnetic introduction</u> is the production of an electromotive force (voltage) across an electrical conductor in a changing magnetic field.
- <em><u>Step up transformers</u></em><u> is</u> a transformer in which the output (secondary) voltage is greater than its input (primary) voltage is called a step-up transformer. The step-up transformer decreases the output current for keeping the input and output power of the system equal.
- <u><em>Step down transformer is </em></u><em>a transformer in which the output (secondary) voltage is less than its input (primary) voltage is called a step-down transformer. The number of turns on the primary of the transformer is greater than the turn on the secondary of the transformer.</em>
<em />
<u>The difference between them:</u>
A transformer is a static device which transfers a.c electrical power from one circuit to the other at the same frequency, but the voltage level is usually changed. For economical reasons, electric power is required to be transmitted at high voltage whereas it has to be utilized at low voltage from a safety point of view. This increase in voltage for transmission and decrease in voltage for utilization can only be achieved by using a step-up and step-down transformer.
Hopefully this helped. 
 
        
             
        
        
        
Answer:
 
  
Explanation:
Force is the change in momentum over time
F = Δp/Δt
1. Calculate the change in momentum
p₁ = mv₁ = 1000 kg × 10 m/s = 10 000 kg·m·s⁻¹
p₂ = 0
Δp = p₂ - p₁= (0 - 10 000) kg·m·s⁻¹ = -10 000 kg·m·s⁻¹
2. Calculate the force

 
        
                    
             
        
        
        
The doppler effect is the increase or decrease in the frequency of sound, light, or other waves as the source and observer move toward or away from each other. 
 
        
                    
             
        
        
        
Answer:
Ice is the solid state of water, a normally liquid substance that freezes to the solid state at temperatures of 0 °C (32 °F) or lower and expands to the gaseous state at temperatures of 100 °C (212 °F) or higher.
Explanation: