Answer:
Q = 5.06 x 10⁻⁸ m³/s
Explanation:
Given:
v=0.00062 m² /s and ρ= 850 kg/m³
diameter = 8 mm
length of horizontal pipe = 40 m
Dynamic viscosity =
μ = ρv
=850 x 0.00062
= 0.527 kg/m·s
The pressure at the bottom of the tank is:
P₁,gauge = ρ g h = 850 x 9.8 x 4 = 33.32 kN/m²
The laminar flow rate through a horizontal pipe is:


Q = 5.06 x 10⁻⁸ m³/s
Answer:
It studies the process of technological change. Under the field of Technology Dynamics the process of technological change is explained by taking into account influences from "internal factors" as well as from "external factors
Explanation:
Answer:
Between 35°– 45°
Explanation:
In the vertical position, Point the flame in the direction of travel. Keep the flame tip at the correct height above the base metal. An angle of 35°–45° should be maintained between the torch tip and the base metal. This angle may be varied up or down to heat or cool the weld pool if it is too narrow or too wide
Question:
The question is not complete. See the complete question and the answer below.
A well that pumps at a constant rate of 0.5m3/s fully penetrates a confined aquifer of 34 m thickness. After a long period of pumping, near steady state conditions, the measured drawdowns at two observation wells 50m and 100m from the pumping well are 0.9 and 0.4 m respectively. (a) Calculate the hydraulic conductivity and transmissivity of the aquifer (b) estimate the radius of influence of the pumping well, and (c) calculate the expected drawdown in the pumping well if the radius of the well is 0.4m.
Answer:
T = 0.11029m²/sec
Radius of influence = 93.304m
expected drawdown = 3.9336m
Explanation:
See the attached file for the explanation.
Answer:You are correct, no need to change.
Explanation: