1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Damm [24]
3 years ago
9

Consider a machine of mass 70 kg mounted to ground through an isolation system of total stiffness 30,000 N/m, with a measured da

mping ratio of 0.2. The machine produces a harmonic force of 450 N at 13 rad/s during steady-state operating conditions. Determine
Engineering
1 answer:
klemol [59]3 years ago
8 0

Complete Question

Consider a machine of mass 70 kg mounted to ground through an isolation system of total stiffness 30,000 N/m, with a measured damping ratio of 0.2. The machine produces a harmonic force of 450 N at 13 rad/s during steady-state operating conditions. Determine

(a) the amplitude of motion of the machine,  

(b) the phase angle of the motion,  

(c) the transmissibility ratio,  

(d) the maximum dynamic force transmitted to the floor, and  

(e) the maximum velocity of the machine.

Answer:

a)  X=0.0272m

b)  \phi=22.5 \textdegree

c)  T_r=1.57

d)  F=706.5N

e)  V_{max}=0.35m/s

Explanation:

From the question we are told that:

Mass M=70kg

Total Stiffness \mu=30000

Damping Ratio r=0.2

Force F=450N

Angular velocity \omega =13rad/s

Generally the equation for vibration in an isolated system is mathematically given by

 \omega_n=\sqrt{\frac{k}{m}}

 \omega_n=\sqrt{\frac{30000}{70}}

 \omega_n=20.7rad/s

a)

Generally the equation for Machine Amplitude is mathematically given by

X=\frac{F_O/m}{(\omega_n^2-\omega^2)^2-(2*r*\omega)*\omega_n*\omega^2)^{1/2}}

X=\frac{450}{70}}{(20.7^2-(137^2)^2-(2*0,2*(20.7(13)))^2)^{1/2}

X=0.0272m

b)

Generally the equation for Phase Angle is mathematically given by

\phi=tan^{-1}\frac{2*r*\omega_n*\omega}{\omega_n^2*\omega^2}

\phi=tan^{-1}\frac{2*0.2*20.7*13}{\20.7^2*13^2}

\phi=22.5 \textdegree

c)

Generally the equation for transmissibility ratio is mathematically given by

T_r=\sqrt{\frac{1+(2r\beta)^2}{(1-r^2)^2+(2*\beta*r)^2}}

Where

\beta=Ratio\ of\ angular\ velocity

\beta=\frac{13}{20.7}\\\beta=0.638

Therefore

T_r=\sqrt{\frac{1+(2*(0.2)(0.638))^2}{(1-(0.2)^2)^2+(2*0.2*0.638)^2}}

T_r=1.57

d)

Generally the equation for Maximum dynamic force transmitted to the floor is mathematically given by

 F=(T_r)*F_o

 F=(1.57)*450

 F=706.5N

e)

Generally the equation for Maximum Velocity of Machine is mathematically given by

 V_{max}=\omega*x

 V_{max}=13*0.0272

 V_{max}=0.35m/s

You might be interested in
A geothermal heat pump absorbs 15 KJ/s of heat from the Earth 15 m below a house. This heat pump uses a 7.45 kJ/s compressor.
Anna007 [38]

Answer:

COP of the heat pump is 3.013

OP of the cycle is  1.124

Explanation:

W = Q₂ - Q₁

Given

a)

Q₂ = Q₁ + W

     = 15 + 7.45

     = 22.45 kw

COP = Q₂ / W = 22.45 / 7.45 = 3.013

b)

Q₂ = 15 x 1.055 = 15.825 kw

therefore,

Q₁ = Q₂ - W

Q₁ = 15.825 - 7.45 = 8.375

∴ COP = Q₁ / W = 8.375 / 7.45 = 1.124

4 0
3 years ago
Read 2 more answers
g For this project you are required to perform Matrix operations (Addition, Subtraction and Multiplication). For each of the ope
Kruka [31]

Answer:

C++ code is explained below

Explanation:

#include<iostream>

using namespace std;

//Function Declarations

void add();

void sub();

void mul();

//Main Code Displays Menu And Take User Input

int main()

{

  int choice;

  cout << "\nMenu";

  cout << "\nChoice 1:addition";

  cout << "\nChoice 2:subtraction";

  cout << "\nChoice 3:multiplication";

  cout << "\nChoice 0:exit";

 

  cout << "\n\nEnter your choice: ";

 

  cin >> choice;

 

  cout << "\n";

 

  switch(choice)

  {

      case 1: add();

              break;

             

      case 2: sub();

              break;

             

      case 3: mul();

              break;

     

      case 0: cout << "Exited";

              exit(1);

     

      default: cout << "Invalid";      

  }

  main();  

}

//Addition Of Matrix

void add()

{

  int rows1,cols1,i,j,rows2,cols2;

 

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  //Taking First Matrix

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  //Printing 1st Matrix

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

  //Taking Second Matrix

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  //Displaying second Matrix

  cout << "\n";

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

  //Displaying Sum of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      cout << "\n";

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]+m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void sub()

{

  int rows1,cols1,i,j,k,rows2,cols2;

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

 

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

  cout << "\n";

  //Displaying Subtraction of m1 & m2

  if(rows1 == rows2 && cols1 == cols2)

  {

      for(i=0;i<rows1;i++)

      {

          for(j=0;j<cols1;j++)

              cout << m1[i][j]-m2[i][j] << " ";

          cout << "\n";  

      }

  }

  else

      cout << "operation is not supported";

     

  main();

 

}

void mul()

{

  int rows1,cols1,i,j,k,rows2,cols2,mul[10][10];

  cout << "\nmatrix1 # of rows: ";

  cin >> rows1;

 

  cout << "\nmatrix1 # of columns: ";

  cin >> cols1;

 

   int m1[rows1][cols1];

 

  for(i=0;i<rows1;i++)

      for(j=0;j<cols1;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m1[i][j];

          cout << "\n";

      }

  cout << "\n";

  for(i=0;i<rows1;i++)

  {

      for(j=0;j<cols1;j++)

          cout << m1[i][j] << " ";

      cout << "\n";

  }

     

  cout << "\nmatrix2 # of rows: ";

  cin >> rows2;

 

  cout << "\nmatrix2 # of columns: ";

  cin >> cols2;

 

  int m2[rows2][cols2];

 

  for(i=0;i<rows2;i++)

      for(j=0;j<cols2;j++)

      {

          cout << "\nEnter element (" << i << "," << j << "): ";

          cin >> m2[i][j];

          cout << "\n";

      }

  cout << "\n";

  //Displaying Matrix 2

  for(i=0;i<rows2;i++)

  {

      for(j=0;j<cols2;j++)

          cout << m2[i][j] << " ";

      cout << "\n";

  }

     

  if(cols1!=rows2)

      cout << "operation is not supported";

  else

  {

      //Initializing results as 0

      for(i = 0; i < rows1; ++i)

  for(j = 0; j < cols2; ++j)

  mul[i][j]=0;

// Multiplying matrix m1 and m2 and storing in array mul.

  for(i = 0; i < rows1; i++)

  for(j = 0; j < cols2; j++)

  for(k = 0; k < cols1; k++)

  mul[i][j] += m1[i][k] * m2[k][j];

// Displaying the result.

  cout << "\n";

  for(i = 0; i < rows1; ++i)

      for(j = 0; j < cols2; ++j)

      {

      cout << " " << mul[i][j];

      if(j == cols2-1)

      cout << endl;

      }

      }  

  main();

 }

5 0
3 years ago
On highways, the far left lane is usually the _____. A. emergency lane B. merge lane C. slowest D. fastest
slamgirl [31]

On highways, the far left lane is usually the<u> fastest</u> moving traffic.

Answer: Option D.

<u>Explanation:</u>

For the most part, the right lane of a freeway is for entering and leaving the traffic stream. It is an arranging path, for use toward the start and end of your interstate run. The center paths are for through traffic, and the left path is for passing. On the off chance that you are not passing somebody, try not to be driving in the left path.

Regular practice and most law on United States expressways is that the left path is saved for passing and quicker moving traffic, and that traffic utilizing the left path must respect traffic wishing to surpass.

7 0
3 years ago
Read 2 more answers
You guys are amazing :D
Sloan [31]
Ik i am thank you tho xoxo
3 0
3 years ago
Read 2 more answers
Water flows half-full through a 50-cm-diameter steel channel at an average velocity of 4.3 m/s. Determine the volume flow rate a
Citrus2011 [14]

Um, I do not know what to say ?

3 0
2 years ago
Other questions:
  • . Using the Newton Raphson method, determine the uniform flow depth in a trapezoidal channel with a bottom width of 3.0 m and si
    11·1 answer
  • What is the reason for the development of new construction of materials for human use? (Select all that apply.)
    12·1 answer
  • Calculate the differential pressure in kPa across the hatch of a submarine 320m below the surface of the sea. Assume the atmosph
    6·1 answer
  • A cyclone is operated in a closed circuit with a ball mill. The cyclone is feed from a rod mill with a slurry that has a density
    6·1 answer
  • One of the best ways to find a vacuum leak on a speed-density fuel-injection system is to read the intake air controller (LAC) c
    12·2 answers
  • Electrical pressure or “force”<br><br> A) current<br> B) resistance <br> C) voltage
    6·1 answer
  • 29
    6·1 answer
  • A piston-cylinder apparatus has a piston of mass 2kg and diameterof
    12·1 answer
  • How can statistical analysis of a dataset inform a design process
    8·1 answer
  • To put out a class D metal fire, you must _______ the fire.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!