1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Levart [38]
3 years ago
9

The advantage of using rose bud tips is that they:

Engineering
1 answer:
Jlenok [28]3 years ago
3 0

Answer:

The advantage to using a rosebud tip is that it expands the flame temperature over a wider area vs using a #0 size tip.

Explanation:

Hope this helped Mark BRAINLIEST!!

You might be interested in
A steel bar 100 mm (4.0 in.) long and having a square cross section 20 mm (0.8 in.) on an edge is pulled intension with a load o
grigory [225]

Answer:

The elastic modulus of the steel is 139062.5 N/in^2

Explanation:

Elastic modulus = stress ÷ strain

Load = 89,000 N

Area of square cross section of the steel bar = (0.8 in)^2 = 0.64 in^2

Stress = load/area = 89,000/0.64 = 139.0625 N/in^2

Length of steel bar = 4 in

Extension = 4×10^-3 in

Strain = extension/length = 4×10^-3/4 = 1×10^-3

Elastic modulus = 139.0625 N/in^2 ÷ 1×10^-3 = 139062.5 N/in^2

7 0
3 years ago
Who plays blox burg???
xeze [42]

Answer:

I don't have robux

Explanation:

but i love adopt me

7 0
3 years ago
Read 2 more answers
What is the instantaneous center of zero velocity? List two approaches for determining the is the instantaneous center of zero v
Lera25 [3.4K]

Explanation:

Instantaneous center:

   It is the center about a body moves in planer motion.The velocity of Instantaneous center is zero and Instantaneous center can be lie out side or inside the body.About this center every particle of a body rotates.

From the diagram

Where these two lines will cut then it will the I-Center.Point A and B is moving perpendicular to the point I.

If we take three link link1,link2 and link3 then I center of these three link will be in one straight line It means that they will be co-linear.

I_{12},I_{23},I_{31} all\ are\ co-linear.

5 0
3 years ago
A rigid tank contains 1 kg of oxygen (O2) at p1 = 35 bar, T1 = 180 K. The gas is cooled until the temperature drops to 150 K. De
andreyandreev [35.5K]

Answer:

a. Volume = 13.36 x 10^-3 m³ Pressure = 29.17 bar  b. Volume = 14.06 x 10^-3 m³ Pressure = 22.5 bar

Explanation:

Mass of O₂ = 1kg, Pressure (P1) = 35bar, T1= 180K, T2= 150k Molecular weight of O₂ = 32kg/Kmol

Volume of tank and final pressure using a)Ideal Gas Equation and b) Redlich - Kwong Equation

a. PV=mRT

V = {1 x (8314/32) x 180}/(35 x 10⁵) = 13.36 x 10^-3

Since it is a rigid tank the volume of the tank must remain constant and hnece we can say

T2/T1 = P2/P1, solving for P2

P2 = (150/180) x 35 = 29.17bar

b. P1 = {RT1/(v1-b)} - {a/v1(v1+b)(√T1)}

where R, a and b are constants with the values of, R = 0.08314bar.m³/kmol.K, a = 17.22(m³/kmol)√k, b = 0.02197m³/kmol

solving for v1

35 = {(0.08314 x 180)/(v1 - 0.02197)} - {17.22/(v1)(v1 + 0.02197)(√180)}

35 = {14.96542/(v1-0.02197)} - {1.2835/v1(v1 + 0.02197)}

Using Trial method to find v1

for v1 = 0.5

Right hand side becomes =  {14.96542/(0.5-0.02197)} - {1.2835/0.5(0.5 + 0.02197)} = 31.30 ≠ Left hand side

for v1 = 0.4

Right hand side becomes =  {14.96542/(0.4-0.02197)} - {1.2835/0.4(0.4 + 0.02197)} = 39.58 ≠ Left hand side

for v1 = 0.45

Right hand side becomes =  {14.96542/(0.45-0.02197)} - {1.2835/0.45(0.45 + 0.02197)} = 34.96 ≅ 35

Specific Volume = 35 m³/kmol

V = m x Vspecific/M = (1 x 0.45)/32 = 14.06 x 10^-3 m³

For Pressure P2, we know that v2= v1

P2 = {RT2/(v2-b)} - {a/v2(v2+b)(√T2)} = {(0.08314 x 150)/(0.45 - 0.02197)} - {17.22/(0.45)(0.45 + 0.02197)(√150)} = 22.5 bar

3 0
3 years ago
An ideal Otto cycle has a compression ratio of 9.2 and uses air as the working fluid. At the beginning of the compression proces
Allushta [10]

Answer:

(a) The amount of heat transferred to the air, q_{out} is 215.5077 kJ/kg

(b) The net work output, W_{net}, is 308.07 kJ/kg

(c) The thermal efficiency is 58.8%

(d) The Mean Effective Pressure, MEP, is 393.209 kPa

Explanation:

(a) The assumptions made are;

c_p = 1.005 kJ/(kg·K), c_v = 0.718 kJ/(kg·K), R = 0.287 kJ/(kg·K),

Process 1 to 2 is isentropic compression, therefore;

T_{2}= T_{1}\left (\dfrac{v_{1}}{v_{2}}  \right )^{k-1} = 300.15\times 9.2^{0.4} = 729.21 \, K

From;

\dfrac{p_{1}\times v_{1}}{T_{1}} = \dfrac{p_{2}\times v_{2}}{T_{2} }

We have;

p_{2} = \dfrac{p_{1}\times v_{1}\times T_{2}}{T_{1} \times v_{2}} = \dfrac{98\times 9.2\times 729.21}{300.15 } = 2190.43 \, kPa

Process 2 to 3 is reversible constant volume heating, therefore;

\dfrac{p_3}{T_3} =\dfrac{p_2}{T_2}

p₃ = 2 × p₂ = 2 × 2190.43 = 4380.86 kPa

T_3 = \dfrac{p_3 \times T_2}{p_2} =\dfrac{4380.86  \times 729.21}{2190.43} = 1458.42 \, K

Process 3 to 4 is isentropic expansion, therefore;

T_{3}= T_{4}\left (\dfrac{v_{4}}{v_{3}}  \right )^{k-1}

1458.42= T_{4} \times \left (9.2 \right )^{0.4}

T_4 = \dfrac{1458.42}{(9.2)^{0.4}}  = 600.3 \, K

q_{out} = m \times c_v \times (T_4 - T_1) = 0.718  \times (600.3 - 300.15) = 215.5077 \, kJ/kg

The amount of heat transferred to the air, q_{out} = 215.5077 kJ/kg

(b) The net work output, W_{net}, is found as follows;

W_{net} = q_{in} - q_{out}

q_{in} = m \times c_v \times (T_3 - T_2) = 0.718  \times (1458.42 - 729.21) = 523.574 \, kJ/kg

\therefore W_{net} = 523.574 - 215.5077 = 308.07 \, kJ/kg

(c) The thermal efficiency is given by the relation;

\eta_{th} = \dfrac{W_{net}}{q_{in}} \times 100=  \dfrac{308.07}{523.574} \times 100= 58.8\%

(d) From the general gas equation, we have;

V_{1} = \dfrac{m\times R\times T_{1}}{p_{1}} = \dfrac{1\times 0.287\times 300.15}{98} =0.897\, m^{3}/kg

The Mean Effective Pressure, MEP, is given as follows;

MEP =\dfrac{W_{net}}{V_1 - V_2} = \dfrac{W_{net}}{V_1 \times (1- 1/r)}= \dfrac{308.07}{0.897\times (1- 1/9.2)} = 393.209 \, kPa

The Mean Effective Pressure, MEP = 393.209 kPa.

3 0
3 years ago
Other questions:
  • Two variables, num_boys and num_girls, hold the number of boys and girls that have registered for an elementary school. The vari
    8·1 answer
  • Find the inductive reactance per mile of a single-phase overhead transmission line operating at 60 Hz, given the conductors to b
    6·1 answer
  • For a brass alloy, the following engineering stresses produce the corresponding plastic engineering strains prior to necking:
    9·1 answer
  • In a typical transmission line, the current I is very small and the voltage V is very large. A unit length of the line has resis
    8·1 answer
  • I am standing on the upper deck of the football stadium. I have an egg in my hand. I am going to drop it and you are going to tr
    7·1 answer
  • Using the data from the table, what is P(3)?!
    9·1 answer
  • PLEASE HELP!!! ILL GIVE BRANLIEST *EXTRA POINTS* dont skip :((
    11·2 answers
  • Which of the following can effect LRO?
    12·1 answer
  • To ensure that a vehicle crash is inelastic, vehicle safety designers add crumple zones to vehicles. A crumple zone is a part of
    12·1 answer
  • Task Three :Write a C++ program to read temperature
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!