1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dimas [21]
4 years ago
7

A fluid flows along the x axis with a velocity given by V = ( x / t ) ˆ i , where x is in feet and t in seconds. (a) Plot the sp

eed for 0 ≤ x ≤ 10 ft and t = 3 s . (b) Plot the speed for x = 7 ft and 2 ≤ t ≤ 4 s . (c) Determine the local and convective acceleration. (d) Show that the acceleration of any fluid particle in the flow is zero. (e) Explain physically how the velocity of a particle in this unsteady flow remains constant throughout its motion.

Physics
1 answer:
umka21 [38]4 years ago
3 0

Answer:

c)

 V_local = -x/t^2

 V_convec = x/t^2

d)

a =  V_local +  V_convec = 0

e) When a particle moves towards postive x direction its convective velocity increases, but at the same time the local velocity deacreases (at the same rate) when time increases

Explanation:

Hi!

You can see plots for a) and b) attached on this document

c)

The local acceleration is just teh aprtial derivative of the velocity with respect to t:

\frac{dV}{dt} = \frac{d}{dt} \frac{x}{t}=- \frac{x}{t^2}

And the convective acceleration is given by the product of the velocity times the gradient of the velocity, that is:

\vec{v} \cdot \nabla \vec{v} = v ( \frac{dv}{dx} ) =\frac{x}{t} \frac{1}{t} = \frac{x}{t^2}

d)

Since the acceleration of any fluid particle is the sum of the local and convective accelerations, we can easily see that it is equal to zero, since they are equal but with opposit sign

e)

This is because of teh particular form of the velocity. A particle will move towards areas of higher velocities (convectice acceleration), but as time increases,  the velocity is also decreasing (local acceleration), and the sum of these quantities adds up to zero

You might be interested in
A spacecraft is fueled using hydrazine (N2H4; molecular weight of 32 grams per mole [g/mol]) and carries 1640 kilograms [kg] of
Sauron [17]

Answer:

The value is t = 689.029 \  hours

Explanation:

From the question we are told that

The molar mass of hydrazine is Z =  32 g/mol = \frac{32}{1000} = 0.032 \  kg/mol

The initial temperature is T_i  =  -186 ^o F = (-186-32) *\frac{5}{9} +273.15 = 152\ K

The final temperature is T_f  =  78 ^o F = (78-32) *\frac{5}{9} +273.15 = 298.7 \ K

The specific heat capacity is c_h  =  0.099 [kJ/(mol K)] = 0.099 *10^3 J/(mol/K)

The power available is P = 300 \ W

The mass of the fuel is m =   1640 \  kg

Generally the number of moles of hydrazine present is

n  =  \frac{m}{Z}

=> n  =  \frac{1640}{= 0.032}

=> n  =  51250 \ mol

Generally the quantity of heat energy needed is mathematically represented as

Q =  n * c_h * (T_f -T_i)

=> Q =  51250  * 0.099 *10^3  * (298.7 - 152)

=> Q =  7.441516913 * 10^{8} \  J

Generally the time taken is mathematically represented as

t =  \frac{Q}{P}

=> t =  \frac{7.441516913 * 10^{8} }{300}

=> t = 2480505.6377 s

Converting to hours

t = \frac{2480505.6377}{3600}

=> t = 689.029 \  hours

6 0
3 years ago
The diagram shows a person using a piece of gym equipment to lift weights.
ki77a [65]

Answer:

C. The lower legs are levers, and the knees are fulcrums. The ankles hold the loads.

Explanation:

3 0
4 years ago
Read 2 more answers
Which type radiation can be observed well from Earth's surface?
umka2103 [35]

Answer:

Eletromagnetic radiation which is also known as visible light.

Explanation:

4 0
3 years ago
Read 2 more answers
A 0.405 kg mass is attached to a spring with a force constant of 26.3 N/m and released from rest a distance of 3.31 cm from the
miv72 [106K]

Answer:

0.231 m/s

Explanation:

m = mass attached to the spring = 0.405 kg

k = spring constant of spring = 26.3 N/m

x₀ = initial position = 3.31 cm = 0.0331 m

x = final position = (0.5) x₀ = (0.5) (0.0331) = 0.01655 m

v₀ = initial speed = 0 m/s

v = final speed = ?

Using conservation of energy

Initial kinetic energy + initial spring energy = Final kinetic energy + final spring energy

(0.5) m v₀² + (0.5) k x₀² = (0.5) m v² + (0.5) k x²

m v₀² + k x₀² = m v² + k x²

(0.405) (0)² + (26.3) (0.0331)² = (0.405) v² + (26.3) (0.01655)²

v = 0.231 m/s

8 0
4 years ago
Two asteroids identical to those above collide at right angles and stick together; i.e, their initial velocities were perpendicu
11111nata11111 [884]

Answer:

velocity = 62.89 m/s  in 58 degree measured from the x-axis

Explanation:

Relevant information:

Before the collision, asteroid A of mass 1,000 kg moved at 100 m/s, and asteroid B of mass 2,000 kg moved at 80 m/s.

Two asteroids moving with velocities collide at right angles and stick together. Asteroid A initially moving to right direction and asteroid B initially move in the upward direction.

Before collision Momentum of A = 1000 x 100 = $ 10^5$ kg - m/s in the right direction.

Before collision Momentum of B = 2000 x 80 = 1.6 x $ 10^5$  kg - m/s in upward direction.

Mass of System of after collision = 1000 + 2000 = 3000 kg

Now applying the Momentum Conservation, we get

Initial momentum in right direction = final momentum in right direction = $ 10^5$

And, Initial momentum in upward direction = Final momentum in upward direction = 1.6 x $ 10^5$

So, $ V_x = \frac{10^5}{3000} $  = $ \frac{100}{3} $  m/s

and $ V_y=\frac{160}{3}$  m/s

Therefore, velocity is = $ \sqrt{V_x^2 + V_y^2} $

                                   = $ \sqrt{(\frac{100}{3})^2 + (\frac{160}{3})^2} $

                                   = 62.89 m/s

And direction is

tan θ = $ \frac{V_y}{V_x}$     = 1.6

therefore, $ \theta = \tan^{-1}1.6 $

                   = $ 58 ^{\circ}$  from x-axis

4 0
3 years ago
Other questions:
  • The potential-energy function u(x) is zero in the interval 0≤x≤l and has the constant value u0 everywhere outside this interval.
    6·1 answer
  • (30 points) Air enters a compressor at 1 bar, 310 K, and is compressed adiabatically to 12 bar, 630 K. The air exiting the compr
    7·1 answer
  • E14. A ball rolls off a table with a horizontal velocity of 5 m/s. If
    6·1 answer
  • As the temperature of a fluid decreases— A The number of inter-particle collisions decrease and random movement of particles inc
    5·2 answers
  • Compared with a car moving at some original speed, how much work must the brakes of a car supply to stop a car that is moving tw
    11·1 answer
  • PLS URGENT!!
    15·1 answer
  • How much force is needed to accelerate a 15kg bowling ball at 2 m/s^2
    8·2 answers
  • the momentum of a spring coil when the external compressing force is removed b the difference between the final momentum and the
    8·1 answer
  • Please help!!!!!!!!!!
    8·1 answer
  • What local group of galaxies is the Milky Way part of?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!