1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lerok [7]
3 years ago
14

What is the electric potential energy of a charge that experiences a force of 3.6 x 10^-4N when it is 9.8 x 10^-5 from the sourc

e of the electric field
Physics
1 answer:
Levart [38]3 years ago
7 0
The electric potential energy of the charge is equal to the potential at the location of the charge, V, times the charge, q:
U=qV
The potential is given by the magnitude of the electric field, E, times the distance, d:
V=Ed
So we have
U=qEd (1)
However, the electric field is equal to the electrical force F divided by the charge q:
E= \frac{F}{q}
Therefore (1) becomes
U=Fd
And if we use the data of the problem, we can calculate the electrical potential energy of the charge:
U=Fd=(3.6 \cdot 10^{-4}N)(9.8 \cdot 10^{-5} m)=3.53 \cdot 10^{-8} J
You might be interested in
Can you guys please help me out and it would me great if you could explain it too!!
GenaCL600 [577]
1 is 0n I believe 2 8n or 2n 3 would be 10n 4 is 0n or 12n
4 0
2 years ago
Read 2 more answers
A high diver dives into a swimming pool. His potential energy at the top is 10,000 J (relative to the surface of the pool). What
Semmy [17]

Answer:

Kinetic energy of diver at 90% of the distance to the water is 9000 J

Explanation:

Let d is the distance between the position of the diver and surface of the pool.

Initially, the diver is at rest and only have potential energy which is equal to 10000 J.

As the diver dives towards the pool, its potential energy is converting into kinetic energy due to law of conservation of energy, as total energy of the system remains same.

Energy before diving = Energy during diving

(Potential Energy + Kinetic Energy) =  (Kinetic Energy +  Potential Energy)

When the diver reaches 90% of the distance to the water, its kinetic energy

is 90% to its initial potential energy, as its initial kinetic is zero,i.e.,

K.E. = \frac{90}{100}\times10000

K.E. = 9000 J

6 0
3 years ago
3. A football is kicked with a speed of 35 m/s at an angle of 40°.
jarptica [38.1K]

a) 22.5 m/s

The initial vertical velocity is given by:

u_y = u sin \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_y = (35)(sin 40)=22.5 m/s

b) 26.8 m/s

The initial horizontal velocity is given by:

u_x = u cos \theta

where

u = 35 m/s is the initial speed

\theta=40^{\circ} is the angle of projection of the ball

Substituting into the equation, we find

u_x = (35)(cos 40)=26.8 m/s

c) 2.30 s

The time it takes for the ball to reach the maximum heigth can be found by considering the vertical motion only. This is a uniformly accelerated motion (free-fall), so we can use the suvat equation

v_y = u_y + at

where

v_y is the vertical velocity at time t

u_y = 22.5 m/s

a=g=-9.8 m/s^2 is the acceleration of gravity (negative because it is downward)

At the maximum height, the vertical velocity becomes zero, v_y =0; substituting, we find the time t at which this happens:

0=u_y + gt\\t=-\frac{u_y}{g}=-\frac{22.5}{-9.8}=2.30 s

d) 25.8 m

The maximum height can also be found by considering the vertical motion only. We can use the following suvat equation:

s=u_y t + \frac{1}{2}gt^2

where

s is the vertical displacement at time t

u_y = 22.5 m/s

g=-9.8 m/s^2

Substituting t = 2.30 s, we find the displacement at maximum height, so the maximum height:

s=(22.5)(2.30)+\frac{1}{2}(-9.8)(2.30)^2=25.8 m

e) 123.3 m

In order to find how far does the ball lands, we have to consider the horizontal motion.

First of all, the time it takes for the ball to go back to the ground is twice the time needed for reaching the maximum height:

t=2(2.30 s)=4.60 s

Then, we consider the horizontal motion. There is no acceleration along this direction, so the horizontal velocity is constant:

v_x = 26.8 m/s

Therefore, the horizontal distance travelled during the whole motion is

d=v_x t = (26.8)(4.60)=123.3 m

So, the ball lands 123.3 m far from the initial point.

4 0
3 years ago
When an apple falls towards the earth,the earth moves up to meet the apple. Is this true?If yes, why is the earth's motion not n
Harlamova29_29 [7]

Answer:

because the mass of the apple is very less compared to the mass of earth. Due to less mass the apple cannot produce noticable acceleration in the earth but the earth which has more mass produces noticable acceleration in the apple. thus we can see apple falling on towards the earth but we cannot see earth moving towards the apple.

6 0
3 years ago
An astronaut stands on the surface of an asteroid. The astronaut then jumps such that the astronaut is no longer in contact with
Anna71 [15]

(D) The gravitational force between the astronaut and the asteroid.

Reason :

All the other forces given in the options, except (D), doesn't account for the motion of the astronaut. They are the forces that act between nucleons or atoms and neither of them accounts for an objects motion.

6 0
3 years ago
Other questions:
  • What happens to an atom of a particular element if it somehow loses a proton?
    14·2 answers
  • Place your hands on the side of your head, with your palms facing forward. This should look like you have given yourself large e
    12·1 answer
  • Which of the following are likely to be physical changes to an object?
    14·1 answer
  • Powers given specifically to crongress
    13·1 answer
  • WORKSHEET
    8·1 answer
  • What would the radius (in mm) of the Earth have to be in order for the escape speed of the Earth to equal (1/21) times the speed
    11·1 answer
  • A 72.0-kg skydiver is falling at a terminal velocity of 79.0 m/s. Which equation should be used to calculate the diver’s kinetic
    15·1 answer
  • EASY BRAINLIEST!!URGENT PLEASE HELP.
    8·1 answer
  • 7. A runner increases his velocity from 0 m/s to 20 mis in 2 What is the runner's average acceleration?
    6·1 answer
  • A dentist's chair with a person in it weighs 1675 N. The output plunger of a hydraulic system starts to lift the chair when the
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!