Answer:
31677.2 lb
Explanation:
mass of hammer (m) = 3.7 lb
initial velocity (u) = 5.8 ft/s
final velocity (v) = 0
time (t) = 0.00068 s
acceleration due to gravity (g) 32 ft/s^{2}
force = m x ( a + g )
where
- m is the mass = 3.7 lb
- g is the acceleration due to gravity = 32 ft/s^{2}
- a is the acceleration of the hammer
from v = u + at
a = (v-u)/ t
a = (0-5.8)/0.00068 = -8529.4 ( the negative sign showa the its decelerating)
we can substitute all required values into force= m x (a+g)
force = 3.7 x (8529.4 + 32) = 31677.2 lb
The magnitude of electric field is produced by the electrons at a certain distance.
E = kQ/r²
where:
E = electric field produced
Q = charge
r = distance
k = Coulomb Law constant 9 x10^9<span> N. m</span>2<span> / C</span><span>2
Given are the following:
Q = </span><span>1.602 × 10^–19 C
</span><span>r = 38 x 10^-9 m
Substitue the given:
E = </span>
E = 998.476 kN/C
Answer:
Explanation:
The charge alters that space, causing any other charged object that enters the space to be affected by this field. The strength of the electric field is dependent upon how charged the object creating the field is and upon the distance of separation from the charged object.
Answer:
A proposed answer to a s scientific problem is a hypothesis.