I think it's B. two troughs meeting.
if it's wrong just let me know and I'll figure out the right answer
hope my answer helps!!!!!!
To develop the problem, we require the values concerning the conservation of momentum, specifically as given for collisions.
By definition the conservation of momentum tells us that,
To find the speed at which the arrow impacts the apple we turn to the equation of time, in which,

The linear velocity of an object is given by

Replacing the equation of time we have to,

Velocity two is neglected since there is no velocity of said target before the collision, thus,

Clearing for m_2

Assuming that the stone is thrown vertically... let's say it's a 1 kg stone.It doesn't matter if it's thrown upwards or downwards as (assuming no air friction) it will pass the original throwing point with the same downwards velocity as it had upwards, 3 seconds previously. So it starts with 1/2 m v^2 = 0.5 * 1 * 15^2 = 112.5 J of keThen k.e. gained = gpe lostk.e. gained = m g h = 1 * 10 * 50 = 500 J of Ke gainedso the final (total) ke is 612.5 J which = 1/2 m v^2 = 0.5 v^2 here
so 0.5 v^2 = 612.5so v^2 = 1225so v = 35 m/s
Answer:
Dead lifting uses tho muscle fundamentals
Explanation: