Answer:
t = 0.24 s
Explanation:
As seen in the attached diagram, we are going to use dynamics to resolve the problem, so we will be using the equations for the translation and the rotation dyamics:
Translation: ΣF = ma
Rotation: ΣM = Iα ; where α = angular acceleration
Because the angular acceleration is equal to the linear acceleration divided by the radius, the rotation equation also can be represented like:
ΣM = I(a/R)
Now we are going to resolve and combine these equations.
For translation: Fx - Ffr = ma
We know that Fx = mgSin27°, so we substitute:
(1) mgSin27° - Ffr = ma
For rotation: (Ffr)(R) = (2/3mR²)(a/R)
The radius cancel each other:
(2) Ffr = 2/3 ma
We substitute equation (2) in equation (1):
mgSin27° - 2/3 ma = ma
mgSin27° = ma + 2/3 ma
The mass gets cancelled:
gSin27° = 5/3 a
a = (3/5)(gSin27°)
a = (3/5)(9.8 m/s²(Sin27°))
a = 2.67 m/s²
If we assume that the acceleration is a constant we can use the next equation to find the velocity:
V = √2ad; where d = 0.327m
V = √2(2.67 m/s²)(0.327m)
V = 1.32 m/s
Because V = d/t
t = d/V
t = 0.327m/1.32 m/s
t = 0.24 s
(a) For the work-energy theorem, the work done to lift the can of paint is equal to the gravitational potential energy gained by it, therefore it is equal to

where m=3.4 kg is the mass of the can, g=9.81 m/s^2 is the gravitational acceleration and
is the variation of height. Substituting the numbers into the formula, we find

(b) In this case, the work done is zero. In fact, we know from its definition that the work done on an object is equal to the product between the force applied F and the displacement:

However, in this case there is no displacement, so d=0 and W=0, therefore the work done to hold the can stationary is zero.
(c) In this case, the work done is negative, because the work to lower the can back to the ground is done by the force of gravity, which pushes downward. Its value is given by the same formula used in part (a):

Answer:
150J
Explanation:
work output/work input=100%
so just make work output the subject