1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
RSB [31]
3 years ago
15

A wheel starts from rest and has an angular acceleration that is given by α (t) = (6.0 rad/s4)t2. After it has turned through 10

rev its angular velocity is:
Physics
1 answer:
marissa [1.9K]3 years ago
7 0

Answer:

75 rad/s

Explanation:

The angular acceleration is the time rate of change of angular velocity. It is given by the formula:

α(t) = d/dt[ω(t)]

Hence: ω(t) = ∫a(t) dt

Also, angular velocity is the time rate of change of displacement. It is given by:

ω(t) = d/dt[θ(t)]

θ(t) = ∫w(t) dt

θ(t) = ∫∫α(t) dtdt

Given that: α (t) = (6.0 rad/s4)t² = 6t² rad/s⁴. Hence:

θ(t) = ∫∫α(t) dtdt

θ(t) = ∫∫6t² dtdt =∫[∫6t² dt]dt

θ(t) = ∫[2t³]dt = t⁴/2 rad

θ(t) = t⁴/2 rad

At θ(t) = 10 rev = (10 *  2π) rad = 20π rad, we can find t:

20π = t⁴/2

40π = t⁴

t = ⁴√40π

t = 3.348 s

ω(t) = ∫α(t) dt = ∫6t² dt = 2t³

ω(t) = 2t³

ω(3.348) = 2(3.348)³ = 75 rad/s

You might be interested in
Suppose your surface body temperature averaged 90 degrees F. How much radiant energy in W/m^2 would be emitted from your body?
Debora [2.8K]

493 \; \text{W}\cdot \text{m}^{-2}.

<h3>Explanation</h3>

The Stefan-Boltzmann Law gives the energy radiation <em>per unit area</em> of a black body:

\dfrac{P}{A} = \sigma \cdot T^{4}

where,

  • P the total power emitted,
  • A the surface area of the body,
  • \sigma the Stefan-Boltzmann Constant, and
  • T the temperature of the body in degrees Kelvins.

\sigma = 5.67 \times 10^{-8} \;\text{W}\cdot \text{m}^{-2} \cdot \text{K}^{-4}.

T = 90 \; \textdegree{}\text{F} = (\dfrac{5}{9} \cdot (90-32) + 273.15) \; \text{K} = 305.372 \; \text{K}.

\dfrac{P}{A} = \sigma \cdot T^{4} = 5.67 \times 10^{-8} \times 305.372^{4} = 493\; \text{W}\cdot \text{m}^{-2}.

Keep as many significant figures in T as possible. The error will be large when T is raised to the power of four. Also, the real value will be much smaller than 493\; \text{W}\cdot \text{m}^{-2} since the emittance of a human body is much smaller than assumed.

5 0
3 years ago
PLEASE HELP!!! WILL GET BRAINIEST FOR 5 SENTENCES
emmasim [6.3K]
Hello.

BEVs and hydrogen fuel cell vehicles are a more promising transportation technology for the future because they reduce greenhouse gas emissions as well as CO2 making it more 'green.' The second question is your opinion, in mine no, they should not be required but they should at least be considering.
Have a nice day
5 0
3 years ago
How to make my rabbit bark​
andre [41]

Answer:

l.j

Explanation:

7 0
3 years ago
Read 2 more answers
If you have 80g of a radioactive substance whose half life is 2 days, how long will it take for the substance to decay to the po
Ber [7]

Answer:

6 days.

Explanation:

From radioactivity, The expression for half life is given as,

R/R' = 2⁽ᵃ/ᵇ)................... Equation 1

Where R = original mass of the radioactive substance, R' = Remaining mass of the radioactive substance after decay, a = Total time taken to decay, b = half life.

Given: R = 80 g, R' = 10 g, b = 2 days.

Substitute into equation 1

80/10 = 2⁽ᵃ/²⁾

8 = 2⁽ᵃ/²⁾

2³ = 2⁽ᵃ/²)

Equating the base and solving for a

3 = a/2

a = 2×3

a = 6 days.

5 0
3 years ago
A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 19
Hunter-Best [27]

The car will take 300 m before it stops due to applying break.

<h3>What's the relation between initial velocity, final velocity, acceleration and distance?</h3>
  • As per Newton's equation of motion, V² - U² = 2aS
  • V= final velocity velocity of the object, U = initial velocity velocity of the object, a= acceleration, S = distance covered by the object
  • Here, U = 60 ft/sec, V = 0 m/s, a= -6 ft/sec²
  • So, 0² - 60² = 2×6× S

=> -3600 = -12S

=> S = 3600/12 = 300 m

Thus, we can conclude that the distance covered by the car is 300 m before it stopped.

Disclaimer: The question was given incomplete on the portal. Here is the complete question.

Question: A car is being driven at a rate of 60 ft/sec when the brakes are applied. The car decelerates at a constant rate of 6 ft/sec². How long will it take before the car stops?

Learn more about the Newton's equation of motion here:

brainly.com/question/8898885

#SPJ1

7 0
2 years ago
Other questions:
  • If you throw a red stone into the blue sea what it will become?
    8·1 answer
  • Your friend has decided to make some money during the next State Fair by inventing a game of skill. In the game as she has devel
    9·1 answer
  • What are the preserved remains of organisms?
    12·1 answer
  • What simple machine makes up most of the joints in your body
    10·1 answer
  • In the image below, a free-body diagram represents the forces of several vehicles driving across a bridge. Assume that the bridg
    8·1 answer
  • What is your zodiac sign?
    7·1 answer
  • A satellite orbits earth at constant speed in circular orbit.Which statement is correct? A The resultant force on the satellite
    10·1 answer
  • I this right....????
    11·2 answers
  • Assume that a vaulter is able to carry a vaulting pole while running as fast as Carl Lewis in his world record 100-m dash (aroun
    13·1 answer
  • If a lever has a mechanical advantage of 5 and 50 N of force is used to lift a rock, what is the weight of the rock?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!