The speed of sound at T=25°C is Vs=346 m/s. So the sound has to reach the cliff and return back to you so the path it needs to travel is s=2*440 m = 880 m.
Since the speed of sound is constant s=Vs*t, and t= s/Vs=880/346=2.54335 s. You will hear the echo after t=2.54335 s after you shouted.
Answer: Rock candy is candy made of large sugar crystals. To make rock candy, a supersaturated solution of sugar in water is created and left undisturbed for a few days. The driving force behind crystallization is supersaturation.
The answer to this question is false
Answer:
The correct answer is B.
The astronaut will know due to the light from the explosion.
Explanation:
Sound and vibrations require a medium such as air to travel through. Space, there is no air. Only a vacuum. So sound and vibrations are unable to travel. Light requires no medium to travel. It can go through a vacuum.
Therefore the Astronaut will see a bright flash of light as it travels from the explosion to outer space. It is also important to note that light can travel very far because nothing else interacts with its wave particles and as such, it cannot be impeded.
Cheers!
The electric field of a very large (essentially infinitely large) plane of charge is given by:
E = σ/(2ε₀)
E is the electric field, σ is the surface charge density, and ε₀ is the electric constant.
To determine σ:
σ = Q/A
Where Q is the total charge of the sheet and A is the sheet's area. The sheet is a square with a side length d, so A = d²:
σ = Q/d²
Make this substitution in the equation for E:
E = Q/(2ε₀d²)
We see that E is inversely proportional to the square of d:
E ∝ 1/d²
The electric field at P has some magnitude E. Now we double the side length of the sheet while keeping the same amount of charge Q distributed over the sheet. By the relationship of E with d, the electric field at P must now have a quarter of its original magnitude:
