Answer:
h> 2R
Explanation:
For this exercise let's use the conservation of energy relations
starting point. Before releasing the ball
Em₀ = U = m g h
Final point. In the highest part of the loop
Em_f = K + U = ½ m v² + ½ I w² + m g (2R)
where R is the radius of the curl, we are considering the ball as a point body.
I = m R²
v = w R
we substitute
Em_f = ½ m v² + ½ m R² (v/R) ² + 2 m g R
em_f = m v² + 2 m g R
Energy is conserved
Emo = Em_f
mgh = m v² + 2m g R
h = v² / g + 2R
The lowest velocity that the ball can have at the top of the loop is v> 0
h> 2R
Answer:
0.44m/s
Explanation:
drift velocity=I/nAq
diameter 12 gauge
wire=0.081inches=0.081*2.5=0.2025cm radius=0.10125cm area=pi*R^2 =20/8.5*10^22*3.14*0.10125^2*10^-4*1.6*10^-19*
V = 0.44m/s
Plate Tectonics cause most earthquakes.
I’m pretty positive that it’s A. Conduction. Just refer to the definition of it.
Answer: you subtract the number of protons from the mass number, on the periodic table your atomic number is your protons and your atomic mass is the mass number
Explanation: