Answer: the constant angular velocity of the arms is 86.1883 rad/sec
Explanation:
First we calculate the linear velocity of the single sprinkler;
Area of the nozzle = π/4 × d²
given that d = 8mm = 8 × 10⁻³
Area of the nozzle = π/4 × (8 × 10⁻³)²
A = 5.024 × 10⁻⁵ m²
Now total discharge is dived into 4 jets so discharge for single jet will be;
Q_single = Q / n = 0.006 / 4 = 1.5 × 10⁻³ m³/sec
So using continuity equation ;
Q_single = A × V_single
V_single = Q_single/A
we substitute
V_single = (1.5 × 10⁻³) / (5.024 × 10⁻⁵)
V_single = 29.8566 m/s
Now resolving the forces as shown in the second image,
Vt = Vcos30°
Vt = 29.8566 × cos30°
Vt = 25.8565 m/s
Finally we calculate the angular velocity;
Vt = rω
ω_single = Vt / r
from the given diagram, radius is 300mm = 0.3m
so we substitute
ω_single = 25.8565 / 0.3
ω_single = 86.1883 rad/sec
Therefore the constant angular velocity of the arms is 86.1883 rad/sec
Answer:
0.191 s
Explanation:
The distance from the center of the cube to the upper corner is r = d/√2.
When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ. The new vertical distance from the center to the corner is r cos θ.
Sum of the torques:
∑τ = Iα
Fr cos θ = Iα
(k r sin θ) r cos θ = Iα
kr² sin θ cos θ = Iα
k (d²/2) sin θ cos θ = Iα
For a cube rotating about its center, I = ⅙ md².
k (d²/2) sin θ cos θ = ⅙ md² α
3k sin θ cos θ = mα
3/2 k sin(2θ) = mα
For small values of θ, sin θ ≈ θ.
3/2 k (2θ) = mα
α = (3k/m) θ
d²θ/dt² = (3k/m) θ
For this differential equation, the coefficient is the square of the angular frequency, ω².
ω² = 3k/m
ω = √(3k/m)
The period is:
T = 2π / ω
T = 2π √(m/(3k))
Given m = 2.50 kg and k = 900 N/m:
T = 2π √(2.50 kg / (3 × 900 N/m))
T = 0.191 s
The period is 0.191 seconds.
Metal
Explanation:
semiconductors are materials which have a conductivity between conductors (generally metals)
The answer is 15.0N its explained in newtons third law hope this helps:)
I believe that the answer is C<span />