Answer:
<h2>b</h2><h2 />
Step-by-step explanation:
Answer:
D
Step-by-step explanation:

=
Factor out 2 on the numerator and 2x on the denominator.
= 
Cancel the factor (x + 2) on the numerator/ denominator
=
← cancel the 2 on numerator/ denominator
=
: x ≠ 0
We performed the following operations:
![f(x)=\sqrt[3]{x}\mapsto g(x)=2\sqrt[3]{x}=2f(x)](https://tex.z-dn.net/?f=f%28x%29%3D%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20g%28x%29%3D2%5Csqrt%5B3%5D%7Bx%7D%3D2f%28x%29)
If you multiply the parent function by a constant, you get a vertical stretch if the constant is greater than 1, a vertical compression if the constant is between 0 and 1. In this case the constant is 2, so we have a vertical stretch.
![g(x)=2\sqrt[3]{x}\mapsto h(x)=-2\sqrt[3]{x}=-g(x)](https://tex.z-dn.net/?f=g%28x%29%3D2%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20h%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D%3D-g%28x%29)
If you change the sign of a function, you reflect its graph across the x axis.
![h(x)=-2\sqrt[3]{x}\mapsto m(x)=-2\sqrt[3]{x}-1=h(x)-1](https://tex.z-dn.net/?f=h%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D%5Cmapsto%20m%28x%29%3D-2%5Csqrt%5B3%5D%7Bx%7D-1%3Dh%28x%29-1)
If you add a constant to a function, you translate its graph vertically. If the constant is positive, you translate upwards, otherwise you translate downwards. In this case, the constant is -1, so you translate 1 unit down.
Answer:
2 for each ride
Step-by-step explanation:
50-26=24 she used 24 so far
24/12=2 each ride was 2