Answer:
4.61 seconds
Explanation:
Given data
Initial velocity= 12m/s
acceleration= -2.6m/s^2
From the given data
we can find the time t
we know that
Acceleration= velocity/time
time= velocity/acceleration
time= 12/2.6
time= 4.61 seconds
Answer:
l= 4 mi : width of the park
w= 1 mi : length of the park
Explanation:
Formula to find the area of the rectangle:
A= w*l Formula(1)
Where,
A is the area of the rectangle in mi²
w is the width of the rectangle in mi
l is the width of the rectangle in mi
Known data
A = 4 mi²
l = (w+3)mi Equation (1)
Problem development
We replace the data in the formula (1)
A= w*l
4 = w* (w+3)
4= w²+3w
w²+3w-4= 0
We factor the equation:
We look for two numbers whose sum is 3 and whose multiplication is -4
(w-1)(w+4) = 0 Equation (2)
The values of w for which the equation (2) is zero are:
w = 1 and w = -4
We take the positive value w = 1 because w is a dimension and cannot be negative.
w = 1 mi :width of the park
We replace w = 1 mi in the equation (1) to calculate the length of the park:
l= (w+3) mi
l= ( 1+3) mi
l= 4 mi
Answer:
Its diameter increases as it flows down from the pipe. Assuming laminar flow for the water, then Bernoulli's equation can be applied.
P1-P2 + (rho)g(h1 - h2) + 1/2(rho)(v1² - v2²) = 0
Explanation:
P1 = P2 = atmospheric pressure so, P1 - P2 = 0
h1 is greater than h2 so h1-h2 is positive. Rearranging the equation above 2{ (rho)g(h1-h2) + 1/2(rho)v1²}/rho = v2²
From the continuity equation for fluids
A1v1 = A2v2
v2 = A1v1/A2
Substituting into the equation above
(A1v1/A2)² = 2{ (rho)g(h1-h2) + 1/2(rho)v1²}/rho
Making A2² the subject of the formula,
A2² = (A1v1)²× rho/(2{ (rho)g(h1-h2) + 1/2(rho)v1²}
The denominator will be greater than the numerator and as a result the diameter of the flowing stream decreases.
Thank you for reading.