Answer:
Vertical component of velocity is 9.29 m/s
Explanation:
Given that,
Velocity of projection of a projectile, v = 22 m/s
It is fired at an angle of 22°
The horizontal component of velocity is v cosθ
The vertical component of velocity is v sinθ
So, vertical component is given by :



Hence, the vertical component of the velocity is 9.29 m/s
Answer:
The acceleration is 1 cm/s^2.
Explanation:
The acceleration is defined as the rate of change of velocity.
Here, initial velocity, u = 3/1 = 3 cm/s
final velocity, v = 4/1 = 4 cm/s
time, t = 1 s
Let the acceleration is a.
Use first equation of motion
v = u + at
4 = 3 + 1 x a
a = 1 cm/s^2
To prevent the crate from slipping, the maximum force that the belt can exert on the crate must be equal to the static friction force.
Ff = 0.5 * 16 * 9.8 = 78.4 N
a = 4.9 m/s^2
If acceleration of the belt exceeds the value determined in the previous question, what is the acceleration of the crate?
In this situation, the kinetic friction force is causing the crate to decelerate. So the net force on the crate is 78.4 N minus the kinetic friction force.
Ff = 0.28 * 16 * 9.8 = 43.904 N
Net force = 78.4 – 43.904 = 34.496 N
To determine the acceleration, divide by the mass of the crate.
a = 34.496 ÷ 16 = 2.156 m/s^2
Since its a sphere, the top is seen first because its the tallest part if the ship. If the earth was flat, the whole ship would be seen.