<span>let the fsh jump with initial velocity (u) in direction (angle p) with horizontal
it can cross and reach top of trajectory if its top height h = 1.5m
and horizontal distance d = (1/2) Range
--------------------------------------...
let t be top height time
at top height, vertical component of its velocity =0
vy = 0 = u sin p - gt
t = u sin p/g
h = [u sin p]*t - 0.5 g[t[^2
1.5 = u^2 sin^2 p/g - u^2 sin^2 p/2g
u^2 sin^2 p/2g = 1.5
u^2 sin^2 p = 1.5*2*9.8 = 29.4
u sin p = 5.42 m/s >>>>>>>>>>>>>>> V-component
=====================
t = HALF the time of flight
d = (1/2) Range (R) = (1/2) [2 u^2 sin p cos p/g]
1 = u^2 sin p cos p/g
u sin p * u cos p = 9.8
5.42 * u cos p = 9.8
u cos p = 1.81 m/s >>>>>>>>>>>>> H-component
check>>
u = sqrt[u^2 cos^2 p + u^2 sin^2 p] = 5.71 m/s
u < less than fish's potential jump speed 6.26 m/s
so it will able to cross</span>
Answer:
D. has no overall force acting on it.
Explanation:
Why?
Because in a straight line at the constant speed means the car moving in the same velocity, which is not acceleration neither deceleration, and it cannot be on a downhill slope. So the correct answer is
<h3>→ D. has no overall force acting on it.</h3>
Answer: a
Explanation: because the answer is 1.4444444 and that's the closest
Answer:
The magnification of an astronomical telescope is -30.83.
Explanation:
The expression for the magnification of an astronomical telescope is as follows;

Here, M is the magnification of an astronomical telescope,
is the focal length of the eyepiece lens and
is the focal length of the objective lens.
It is given in the problem that an astronomical telescope having a focal length of objective lens 74 cm and whose eyepiece has a focal length of 2.4 cm.
Put
and
in the above expression.

M=-30.83
Therefore, the magnification of an astronomical telescope is -30.83.
Answer:
Vector Quantity: A physical quantity is said to be a vector quantity when it has both magnitude and direction. The scalar quantities are distance, mass, time, volume, density, speed, temperature, and energy, The vector quantities are weight, velocity, acceleration, and force.
Explanation:
Mark me brainleist PLZZZZ