Answer:
ω=6684.51 rpm
Explanation:
r= 30cm= 0.3m
a= 15000gs (convert to m/s^{2}
1g = 9.8 m/s^{2}
a= 15000 *9.8 = 147000 m/s^{2}
a=\frac{v^{2} }{r}
147000 = \frac{v^{2} }{0.3}
147000*0.3 = v^{2}
44100 = v^{2}
√44100 = v
210m/s = v
v=210m/s (linear velocity)
we will convert this to angular velocity
ω=\frac{v}{r}
ω= 210/0.3
ω= 700 rads^{-1}
we will convert this to rev per minute
1rad per second = 9.5493 rev per minute
ω= 700*9.5493
ω=6684.51 rpm
Answer:
26.82m/s
Explanation:
Given
Mass = m= 0.4kg
Initial Velocity = u = 0
Charge = 4.0E-5C
Distance= d = 0.5m
Object Charge = 2E-4C
First, we'll calculate the initial energy (E)
E = Potential Energy
PE = kQq / d
Where k = coulomb constant = 8.99E9Nm²/C²
Energy is then calculated by;
PE = 8.99E9 * 4E-5 * 2E-4 / 0.5
PE = 143.84J
Energy = Potential Energy = Kinetic Energy
K.E = ½mv² = 143.84J
½mv² = ½ * 0.40 * v² = 143.85
0.2v² = 143.85
v² = 143.85/0.2
v² = 719.25
v = √719.25
v = 26.81883666380777
v = 26.82m/s
Hence, the object is 26.82m/s fast when the cart moving is very far (infinity) from the fixed charge
Work = force x distance. In units, Joules = Newtons x meters.
So: Work = 50 Newtons x 3 meters
Work = 150 joules. Answer D is correct
FYI - to ace physics, you should learn to identify these values using their fundamental units:
Force = Newtons = Kg·m/s²
Work = joules = kg·m²/s²
Power = watts = kg·m²/s³
In high school physics, If you learn to arrange equations so the units work out properly for the answer, you'll get most problems correct.
Answer:
a) 
b) 
Explanation:
Let's find the radius of the circumference first. We know that bob follows a circular path of circumference 0.94 m, it means that the perimeter is 0.94 m.
The perimeter of a circunference is:


Now, we need to find the angle of the pendulum from vertical.


Let's apply Newton's second law to find the tension.

We use centripetal acceleration here, because we have a circular motion.
The vertical equation of motion will be:
(1)
The horizontal equation of motion will be:
(2)
a) We can find T usinf the equation (1):

We can find the angular velocity (ω) from the equation (2):

b) We know that the period is T=2π/ω, therefore:

I hope it helps you!