Answer:
Explanation:
In the following reaction we have shown an example of aromatic substitution reaction .
C₆H₆ + RCl = C₆H₅R + HCl
This reaction takes place in the presence of catalyst like AlCl₃ which is a lewis acid .
First of all formation of carbocation is made as follows .
RCl + AlCl₃ = R⁺ + AlCl₄⁻
This R⁺ is carbocation which is also called electrophile . It attacks the ring to get attached with it .
C₆H₆ + R⁺ = C₆H₅R⁺H.
The complex formed is unstable , though it is stabilized by resonance effect . In the last step H⁺ is kicked out of the ring . The driving force that does it is the steric hindrance due to presence of two adjacent group of H and R⁺ at the same place . Second driving force is attack by the base AlCl₄⁻ that had been formed earlier . It acts as base and it extracts proton ( H⁺ ) from the ring .
C₆H₅R⁺H + AlCl₄⁻ = C₆H₆ + AlCl₃ + HCl .
The formation of a stable product C₆H₆ also drives the reaction to form this product .
i believe the answer is D, please lmk if it is incorrect!
Answer:
FALSE
nuetrons do indeed have no charge, however they are nearly 2000 more times massive than electrons.
Answer:
2.5 L will be the volume of HNO₃
Explanation:
To find out the total volume of nitric acid in liters we begin from molarity.
HNO₃ solution is 0.10 M
This means that 0.10 moles are contained in 1L of solution.
As we used 0.25 moles of nitric, let's determine the volume by a rule of three:
0.10 moles of nitric acid are contained in 1L of solution
0.25 moles of nitric acid will be contained in (0.25 . 1) / 0.1 = 2.5 L
The following equilibrium will shift in the direction of the product:
<h3>Further explanation</h3>
Given
Reaction
4HCl + O₂ → 2H₂O + 2Cl₂
Cl₂ was removed
Required
Equilibrium changes
Solution
Reaction = - action
adding the products ⇒ Shifts in the direction of the reactants
reducing the products ⇒Shifts in the direction of the products
Cl₂ as a product, so if Cl₂ is taken or reduced, the reaction will try to maintain system equilibrium by moving to the right (product formation) ⇒ Shift in the direction of the product: