1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
prohojiy [21]
3 years ago
10

What is 1/3 of 300​

Physics
2 answers:
USPshnik [31]3 years ago
6 0

Answer:

100

Explanation:

Phantasy [73]3 years ago
6 0

Answer:

100

Explanation:

100 goes into 300 3 times

You might be interested in
HELP!!!
aniked [119]

Answer:

p = m .v momentum = mass • velocity. [kg • m/s] [kg] [m/s]. Kinetic Energy. KE = 12 • m • v ... 1. A 1500 kg car traveling at 15 m/s to the south collides with a 4500 kg truck that is ... What is the final velocity of the two-vehicle mass? ... m/s. What is the velocity of the joined cars after the collision? ... 5) = (1.5x104+1.5x604) VELVE.

Explanation:

4 0
3 years ago
State Pascal's principle of pressure . please help due tomorrow​
Romashka [77]

Answer:

Pascal's law says that pressure applied to an enclosed fluid will be transmitted without a change in magnitude to every point of the fluid and to the walls of the container.

Explanation:

The pressure at any point in the fluid is equal in all directions.

3 0
3 years ago
A charge of 25 nC is uniformly distributed along a straight rod of length 3.0 m that is bent into a circular arc with a radius o
Greeley [361]

Answer:

E = 31.329 N/C.

Explanation:

The differential electric field dE at the center of curvature of the arc is

dE = k\dfrac{dQ}{r^2}cos(\theta ) <em>(we have a cosine because vertical components cancel, leaving only horizontal cosine components of E. )</em>

where r is the radius of curvature.

Now

dQ = \lambda rd\theta,

where \lambda is the charge per unit length, and it has the value

\lambda = \dfrac{25*10^{-9}C}{3.0m} = 8.3*10^{-9}C/m.

Thus, the electric field at the center of the curvature of the arc is:

E = \int_{\theta_1}^{\theta_2} k\dfrac{\lambda rd\theta  }{r^2} cos(\theta)

E = \dfrac{\lambda k}{r} \int_{\theta_1}^{\theta_2}cos(\theta) d\theta.

Now, we find \theta_1 and \theta_2. To do this we ask ourselves what fraction is the arc length  3.0 of the circumference of the circle:

fraction = \dfrac{3.0m}{2\pi (2.3m)}  = 0.2076

and this is  

0.2076*2\pi =1.304 radians.

Therefore,

E = \dfrac{\lambda k}{r} \int_{\theta_1}^{\theta_2} cos(\theta)d\theta= \dfrac{\lambda k}{r} \int_{0}^{1.304}cos(\theta) d\theta.

evaluating the integral, and putting in the numerical values  we get:

E = \dfrac{8.3*10^{-9} *9*10^9}{2.3} *(sin(1.304)-sin(0))\\

\boxed{ E = 31.329N/C.}

4 0
3 years ago
The mole is 6.02 x 10 23 particles. If a person masses out the correct molar mass in grams for a substance then she would have a
Leto [7]

Answer:

1 mole of H2O is 18 grams (2 g H + 16 g Oxygen)

36 / 18 = 2

So 2 moles = 2 * 6.02E23 = 12.04E23 = 1.204E24

7 0
3 years ago
A hunter aims at a deer which is 40 yards away. Her cross- bow is at a height of 5ft, and she aims for a spot on the deer 4ft ab
shutvik [7]

Answer:

a)  θ₁ = 0.487º , b)   t = 0.400 s ,        x = 11.73 ft

Explanation:

For this exercise let's use the projectile launch relationships.

The initial height is I = 5 ft and the final height y = 4 ft

            y = y₀ + v_{oy} t - ½ g t²

The distance to the band is x = 40 yard (3 ft / 1 yard) = 120 ft

            x = v₀ₓ t

            t = x / v₀ₓ

We replace

             y –y₀ = v_{oy} x / v₀ₓ - ½ g x² / v₀ₓ²

             v_{oy} = v₀ sin θ

             v₀ₓ = vo cos θ

             

             y –y₀ = x tan θ - ½ g x² / v₀² cos² θ

                5-4 = 120 tan θ - ½ 32 120 / (300 2 cos2 θ)

                1 = 120 tan θ - 0.0213 sec² θ

Let's use the trigonometry relationship

               Sec² θ = 1 - tan² θ

                 1 = 120 tan θ - 0.0213 (1 –tan²θ)

                 0.0213 tan²θ + 120 tanθ -1.0213 = 0

                 

We change variables

          u = tan θ

          u² + 5633.8 u - 48.03 = 0

We solve the second degree equation

          u = [-5633.8 ±√(5633.8 2 + 4 48.03)] / 2

          u = [- 5633.8 ± 5633.82] / 2

           u₁ = 0.0085

           u₂= -5633.81

           u = tan θ

           θ = tan⁻¹ u

For u₁

           θ₁ = tan⁻¹ 0.0085

           θ₁ = 0.487º

For u₂

           θ₂ = -89.99º

The launch angle must be 0.487º

b) let's look for the time it takes for the arrow to arrive

         x = v₀ₓ t

         t = x / v₀ cos θ

         

         t = 120 / (300 cos 0.487)

         t = 0.400 s

The deer must be at a distance of

           v = 20 mph (5280 ft / 1 mi) (1 h / 3600s) = 29.33 ft / s

           x = v t

           x = 29.33 0.4

           x = 11.73 ft

3 0
3 years ago
Other questions:
  • 20. Unlike other kinds of liquids, volatile liquids
    15·1 answer
  • HELPPPP MEEE!!! 15 POINTS
    9·1 answer
  • Cross country skier moves 32 m west word than 54 m east word and finally 68 m westward what is the distance moved?
    9·1 answer
  • You're driving at 50 mph and then speed up to 70 mph. how much more "force" does the engine in your car have to produce to maint
    12·1 answer
  • A 60.0-kg man jumps 1.70 m down onto a concrete walkway. His downward motion stops in 0.025 seconds. If he forgets to bend his k
    15·1 answer
  • A bumblebee darts past at 3 m/s. The frequency of the hum made by its wings is 152 Hz. Assume the speed of sound to be 342 m/s.
    10·2 answers
  • Diffraction occurs for all types of waves, including sound waves.<br><br> a. True<br> b. False
    10·1 answer
  • What is 2+2 is 4 - 1 =??<br><br><br><br> Know your memes!
    5·2 answers
  • After using soap to wash dishes by hand, if is sometimes difficult to keep your hands from remaining stick. Explain why rinshing
    10·1 answer
  • If your friend has a a mass of 60 kg, how much does the your friend weigh?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!