The answer is D using the work formula
W= F•d but if it was against gravity, it would be 0 if gravity is exerting the same amount, I would pick D using the formula, but I'm not so sure sorry
The electromagnetic spectrum includes a continuous spectrum of wavelengths that include:
Radio waves, microwaves, infrared light, visible, ultraviolet, X-rays, gamma rays
The wavelength decreases from radio waves to gamma rays, whereas the energy increases along the same direction.
In the given example, radio waves have a lower energy and higher wavelength than visible light. The latter can be perceived by the human eye, whereas radio waves are not visible to the human eye.
1) They have colors = visible light
2) They can travel in a vacuum = both
3) They have energy = both
4) They’re used to learn about dust and gas clouds = radio waves
5) They’re used to find the temperature of stars = visible light
6)They’re invisible = radio waves
Trick question? In order to have kinetic energy, an object must be moving. Therefore, in this case, kinetic energy would be 0. If it were asking about potential energy, it would be a different story.
Answer:
a)188.65m
b)154.35m
c)243.7m
Explanation:
Given data:


(a) The distance from the kicker to each of the 2 spectators is given by:

where,
v= speed of sound
=time taken for the sound waves to reach the ears
m
(b)
where,
v= speed of sound
=time taken for the sound waves to reach the ears

(c)As the angle b/w slight lines from the two spectators to the player is right angle,
hypotenuse=the distance b/w 2 spectators
and, the slight lines are the other 2 lines

To determine the force that acts on the mass, just multiply the mass by the gravitational field. Using the given data,
F = (2.50 kg)(14 N/kg) = 35 N
Therefore, the force that acts on the mass is equal to 35 N.