The statement 'energy cannot be created or destroyed' BEST supports the idea that energy remains constant during an energy transformation. It is the first law of thermodynamics.
<h3>Law of Conservation of Energy</h3>
The law of conservation of energy, also known as the first law of thermodynamics, indicates that energy can neither be created nor destroyed.
According to this law, the energy can be interchanged from one type of energy (e.g., kinetic energy) form to another (e.g., potential energy).
The first law of thermodynamics is fundamental for understanding major science disciplines, and it is a rosetta stone in physics.
Learn more about the first law of thermodynamics here:
brainly.com/question/7107028
Answer:
ω' = 0.815 rad/s
Explanation:
Given,
R = 1.20 m
Inertia of merry-go- round= 240 kg.m²
Rotating speed = 9 rpm = 
=0.9424 rad/s
mass of the child, m = 26 kg
angular speed of the merry-go-round=?
we know
Angular momentum, L = I ω
Moment of inertia of the child
I' = m r² = 26 x 1.2² = 37.44 kgm²
Conservation of angular momentum
initial angular momentum = Final angular momentum
I ω = (I+I')ω'
240 x 0.9424 = (240+37.44) ω'
226.176= 277.44 ω'
ω' = 0.815 rad/s
new angular speed of the merry-go- round is equal to 0.815 rad/s
Answer:
Part a)

Part b)

Part c)
Since horizontal speed of truck and the arrow is same so the arrow will strike at the position of the archer as they both moving with same speed
Explanation:
Part a)
As we know that the arrow moves with uniform acceleration in vertical direction so we can use kinematics in Y direction
Here we know that

since the arrow lands at the same height so its vertical displacement of whole motion is zero
so we will have



Part b)
Horizontal distance moved by the arrow

here horizontal speed of arrow is same as that of speed of truck
so we will have


Part c)
Since horizontal speed of truck and the arrow is same so the arrow will strike at the position of the archer as they both moving with same speed
Answer:
12.5 J
Explanation:
Force, F = 25 N
Distance, d = 0.5 m
The direction of force and the displacement is same.
Work is defined as the product of force in the direction of displacement and the displacement.
Work = Force x displacement x CosФ
Where, Ф be the angle between force and the displacement
Here, Ф = 0°
So, W = 25 x 0.5 x Cos0°
W = 12.5 J