Weight of an object is given by the formula W = m x g , where
m : mass of the object
g : gravitational acceleration
It is <u>independent of the horizontal </u><u>acceleration</u>.
<h3>What do we mean by weight of an object?</h3>
Weight is a gauge of how strongly gravity is<u> pulling something down.</u> It is dependent on the object's mass, or how much matter it consists of. It also depends on the <u>object's uniformly distributed</u> downward acceleration caused by gravity.
This equation can be used to express weight:
W = m x g
<h3>What is the difference between weight and mass of an object?</h3>
In everyday speech, the phrases "mass" and "weight" are frequently used interchangeably; nevertheless, the two concepts don't have the same meaning. In contrast to weight, which is a <u>measurement of</u> how the <u>force</u> of gravity works upon a mass, mass is the <u>amount of substance</u> in a material.
To learn more about gravity and acceleration :
brainly.com/question/13860566
#SPJ4
Answer:
When both initial speed and initial displacement is doubled then amplitude will be doubled.
Explanation:
Given that :- Amplitude of simple harmonic Oscillator is doubled.
So,
Formula of Simple harmonic oscillator is
...........(1)
Where X = Position in (m,cm,km.....)
A = Amplitude in (m,cm,km.....)
F = Frequency in (Hz)
T = Time in (sec.)
Ф = Phase in (rad)
For initial displacement taking t=0 we get,
Initial displacement =
.................(2)
Now taking equation (1) and differentiating it w.r.t to (t) we get


taking t=0 for initial speed then we get,
Initial speed =
...............(3)
observing equation (2) & (3) that the initial displacement and initial speed depends on the Amplitude of the Oscillator.
Hence,
when both initial speed and displacement is doubled then amplitude will be doubled.
Try 40. it seems correct. i’m sorry if i’m wrong.
Answer:

Explanation:
First, let's find the voltage through the resistor using ohm's law:

AC power as function of time can be calculated as:
(1)
Where:

Because of the problem doesn't give us additional information, let's assume:

Evaluating the equation (1) in t=3600 (Because 1h equal to 3600s):

Answer: D
Rs = 10.0 m/s
The speed of the boat relative to an observer standing on the shore as it crosses the river is 10.0m/s
Explanation:
Since the boat is moving perpendicular to the current of the river, the speed of the boat has two components.
i. 8.0m/s in the direction perpendicular to the current
ii. 6.0m/s in the direction of the current.
So, the resultant speed can be derived by using the equation;
Rs = √(Rx^2 + Ry^2)
Taking
Ry = 8.0m/s
Rx = 6.0m/s
Substituting into the equation, we have;
Rs = √(6.0^2 + 8.0^2)
Rs = √(36+64) = √100
Rs = 10.0 m/s
The speed of the boat relative to an observer standing on the shore as it crosses the river is 10.0m/s