Displacement = distance and direction from the start-point
to the end-point, regardless of the route followed on the way.
From the throw to the 'plop', the displacement is 5 meters down.
Answer:
The position of the particle is -2.34 m.
Explanation:
Hi there!
The equation of position of a particle moving in a straight line with constant acceleration is the following:
x = x0 + v0 · t + 1/2 · a · t²
Where:
x = position of the particle at a time t:
x0 = initial position.
v0 = initial velocity.
t = time
a = acceleration
We have the following information:
x0 = 0.270 m
v0 = 0.140 m/s
a = -0.320 m/s²
t = 4.50 s (In the question, where it says "4.50 m/s^2" it should say "4.50 s". I have looked on the web and have confirmed it).
Then, we have all the needed data to calculate the position of the particle:
x = x0 + v0 · t + 1/2 · a · t²
x = 0.270 m + 0.140 m/s · 4.50 s - 1/2 · 0.320 m/s² · (4.50 s)²
x = -2.34 m
The position of the particle is -2.34 m.
Answer:
Sledgehammer A has more momentum
Explanation:
Given:
Mass of Sledgehammer A = 3 Kg
Swing speed = 1.5 m/s
Mass of Sledgehammer B = 4 Kg
Swing speed = 0.9 m/s
Find:
More momentum
Computation:
Momentum = mv
Momentum sledgehammer A = 3 x 1.5
Momentum sledgehammer A = 4.5 kg⋅m/s
Momentum sledgehammer B = 4 x 0.9
Momentum sledgehammer B = 3.6 kg⋅m/s
Sledgehammer A has more momentum
Answer
given,
mass of jogger = 67 kg
speed in east direction = 2.3 m/s
mass of jogger 2 = 70 Kg
speed = 1.3 m/s in 61 ° north of east.
jogger one

now
P = P₁ + P₂
magnitude




the angle is
north of east
Answer:
6.5 x 10^32 eV
Explanation:
mass of particle, mo = 1 g = 0.001 kg
velocity of particle, v = half of velocity of light = c / 2
c = 3 x 10^8 m/s
Energy associated to the particle
E = γ mo c^2





Convert Joule into eV
1 eV = 1.6 x 10^-19 J
So, 