First we find the energy level with the following formula, where a is the energy level, n1 is the final energy level, n2 is the starting energy level and r is Rydberg's constant in Joules

We insert the values


The wavelength is found with this formula, where h is Planck's constant and c is the speed of light

Finally we insert the values

Which is the same as 93.8 nm
Answer:
low freezing point. high vapour pressure.
<em>HOPE</em><em> </em><em>IT</em><em> </em><em>WILL</em><em> </em><em>HELP</em><em> </em><em>U</em><em>! </em><em>!</em><em>!</em><em>!</em><em>!</em><em>!</em>
Average velocity =
(displacement) / (time for the displacement)
and
(direction of the displacement) .
Displacement =
(distance from the start-point to the end-point)
and
(direction from the start-point to the end-point) .
When Ben is 200 meters from the corner store,
he is (500 - 200) = 300 meters from his house.
His displacement is
300 meters in the direction
from his house to the neighbor .
His average velocity is
(300/910) = 0.33 meters per second, in the
direction from his house to the neighbor .
I think your question should be:
An industrial laser is used to burn a hole through a piece of metal. The average intensity of the light is

What is the rms value of (a) the electric field and
(b) the magnetic field in the electromagnetic wave emitted by the laser
Answer:
a) 
b) 
Explanation:
To find the RMS value of the electric field, let's use the formula:

Where
;
;

Therefore
![E_r_m_s = sqrt*{(1.239*10^9W/m^2) / [(3.00*10^8m/s)*(8.85*10^-^1^2C^2/N.m^2)]}](https://tex.z-dn.net/?f=%20E_r_m_s%20%3D%20sqrt%2A%7B%281.239%2A10%5E9W%2Fm%5E2%29%20%2F%20%5B%283.00%2A10%5E8m%2Fs%29%2A%288.85%2A10%5E-%5E1%5E2C%5E2%2FN.m%5E2%29%5D%7D%20)

b) to find the magnetic field in the electromagnetic wave emitted by the laser we use:
;
;

D. distance
A light-year is the distance light would travel in 1 year.