Answer:
meter, kilogram
Explanation:
Here we want to know how big the tiger is. This means that we want to measure its size and possibly its mass.
The size is actually a measure of the length of the tiger, and length is measured in meters.
The mass of an object, instead, is a measure of the "amount of matter" in the substance, and it is measured in kilograms.
The other options are wrong because:
- The second is the unit of time
- The candela is the unit of the luminous intensity
- The mole is the unit of the amount of substance, and it is used for gases
- The ampere is the unit of the current
<span>In Ionic type of bonding, electrons are lost (more
protons than electrons and positive charge) or gained (more electrons than
protons, still a negative charge) by atoms, and the atoms are held together by
electrical attraction in the process. Covalent bondings are the sharing of electrons
as well as partial bondings. Covalent bondings’ electrons have the same charges
thus, there is no gaining or losing electrons in the process of sharing. Strong
bondings are applicable only to Hydrogen (H) atoms. </span>
Answer:
a North and South Pole :)
Explanation:
<span>As it is uniform circular motion therefore speed is constant. Therefore we can rule out option B. Also in circular motion the direction of velocity vector changes therefore velocity can't be constant. Therefore option B is incorrect as well. Also centripetal acceleration is always towards the center so option D is wrong as well.
That implies
option A is correct.</span>
Complete Question:
The momentum of an object is determined to be 7.2 × 10-3 kg⋅m/s. Express this quantity as provided or use any equivalent unit. (Note: 1 kg = 1000 g).
Answer:
7.2 gm/s.
Explanation:
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
Given the following data;
Momentum = 7.2 * 10^-3 kgm/s
1 kg = 1000 g
Substituting the unit in kilograms with grams, we have;
Momentum = 7.2 * 10^-3 * 1000 gm/s
<em>Momentum = 7.2 gm/s. </em>