When white light is diffracted and blue color is seen is due to the absorbance of wavelength of all other color except blue.
<u>Explanation:
</u>
- The white light diffracts into rainbow colors which are the 7 colors present in form of VIBGYOR.
- VIBGYOR is the violet, Indigo, Blue, Green, Yellow, Orange and Red.
- When the blue color is seen denotes the shortest wavelength being reflected and all other being absorbed at the specified location.
Mercury Is more suitable than water cause it is denser than water.
Relation between density and pressure
Pressure = force/area
Replace force by mass * acceleration
Pressure = mass * acceleration/ area
We can replace mass by density * volume since density = mass/ volume
Pressure = density * volume * acceleration/ area
Volume is length^3 whereas area is length ^2. So volume / area = length
Pressure = density * length * acceleration
Gravity is form of acceleration so
Pressure = density * length * gravity
Length can be height or depth
Finally pressure = density * height * gravity
P = ρ g h => pressure of liquid
Answer:
V₀y = 0 m/s
t = 2.47 s
V₀ₓ = 61.86 m/s
Vₓ = 61.86 m/s
Explanation:
Since, the ball is hit horizontally, there is no vertical component of velocity at initial point. So, the initial vertical velocity (V₀y) will beL
<u>V₀y = 0 m/s</u>
For the initial vertical velocity of golf ball we consider the vertical motion and apply 2nd equation of motion:
Y = V₀y*t + (0.5)gt²
where,
Y = Height = 30 m
g = 9.8 m/s²
t = time to hit the ground = ?
Therefore,
30 m = (0 m/s)(t) + (0.5)(9.8 m/s²)t²
t² = 30 m/4.9 m/s²
t = √6.122 s²
<u>t = 2.47 s</u>
For initial vertical velocity we analyze the horizontal motion of the ball. We neglect the frictional effects in horizontal motion thus the speed remains uniform. Hence,
V₀ₓ = Xt
where,
V₀ₓ = Initial vertical Velocity = ?
X = Horizontal Distance = 25 m
Therefore,
V₀ₓ = (25 m)(2.47 s)
<u>V₀ₓ = 61.86 m/s</u>
<u></u>
Due, to uniform motion in horizontal direction:
Final Vertical Velocity = Vₓ = V₀ₓ
Vₓ = 61.86 m/s
Answer:
45.89m/s²
Explanation:
Given
Distance S = 305m
Time t = 3.64s
To get the acceleration during this run, we will apply the equation of motion:
S = ut+1/2at²
Substitute the given parameters into the formula and calculate the value of a
305 = 0+1/2 a(3.64)²
304 = 1/2(13.2496)a
304 = 6.6248a
a = 304/6.6248
a = 45.89m/s²
Hence the average acceleration during this run is 45.89m/s²
Answer:
The centripetal acceleration changed by a factor of 0.5
Explanation:
Given;
first radius of the horizontal circle, r₁ = 500 m
speed of the airplane, v = 150 m/s
second radius of the airplane, r₂ = 1000 m
Centripetal acceleration is given as;

At constant speed, we will have;

a₂ = 0.5a₁
Therefore, the centripetal acceleration changed by a factor of 0.5