Answer:
Your answer is: K.E = 8.3 J
Explanation:
If the height (h) = 169.2 meters (m) and the mass (m) is 0.005 kilograms (kg) the total energy will be kinetic energy which is equal to the potential energy.
K.E = P.E and also P.E equals to mgh
Then you substitute all the parameters into the formula ↓
P.E = 0.005 × 9.81 × 169.2
P.E = 8.2908 J
So your answer is 8.2908 but if you round it is K.E = 8.3
When a cloud of gas and dust in space was disturbed, maybe by the explosion of a nearby star.This explosion made waves in space which squeezed the cloud of gas & dust.
The density of silver is ρ = 10500 kg/m³ approximately.
Given:
m = 1.70 kg, the mass of silver
t = 3.0 x 10⁻⁷ m, the thickness of the sheet
Let A be the area.
Then, by definition,
m = (t*A)*ρ
Therefore
A = m/(t*ρ)
= (1.7 kg)/ [(3.0 x 10⁻⁷ m)*(10500 kg/m³)]
= 539.7 m²
Answer: 539.7 m²
Dominant genes and recessive genes are both given to a parents offspring. However, not both can be expressed causing the difference of dominant and recessive. Dominant genes are more likely to be expressed and recessive genes are more likely to be repressed.
M = molar mass of the helium gas = 4.0 g/mol
m = mass of the gas given = 18.0 g
n = number of moles of the gas
number of moles of the gas is given as
n = m/M
n = 18.0/4.0
n = 4.5 moles
P = pressure = 2.00 atm = 2.00 x 101325 Pa = 202650 Pa
V = Volume of balloon = ?
T = temperature = 297 K
R = universal gas constant = 8.314
Using the ideal gas equation
P V = n R T
(202650) V = (4.5) (8.314) (297)
V = 0.055 m³