1) Write the balanced equation to state the molar ratios:
<span>3H2(g) + N2(g) → 2NH3(g)
=> molar ratios = 3 mol H2 : 1 mol N2 : 2 mol NH3
What volume of nitrogen is needed to produce 250.0 L of ammonia gas at STP?
First, convert the 250.0 L of NH3 to number of moles at STP .
Use the fact that 1 mole of gas at STP occupies 22.4 L
=> 250.0 L * 1mol/22.4 L = 11.16 L
Second, use the molar ratio to find the number of moles of N2 that produces 11.16 L of NH3
=> 11.16 L NH3 * [1 mol N2 / 2 mol NH3] = 5.58 mol N2
Third, convert 5.58 mol N2 into liters at STP
=> 5.58 mol N2 * [22.4 L/mol] = 124.99 liters
Answer: 124,99 liters
What volume of hydrogen is needed to produce 2.50 mol NH3 at STP?
First, find the number of moles of H2 that produce 2.50 mol by using the molar ratios:
2.50 mol NH3 * [3mol H2 / 2 mol NH3] = 3.75 mol H2
Second, convert the number of moles to liters of gas at STP:
3.75 mol * 22.4 L/mol = 84 liters of H2
Answer: 84 liters
</span>
Explanation:
A) particles are close together in random positions with about equal kinetic energy and intermolecular forces.
These points are about liquid state.
B) particles are close together in fixed positions with low kinetic energy
These points satisfy the qualities of Solid state
C)particles are far apart with greater kinetic energy and low intermolecular forces.
The above qualities are for Gaseous state of matter
A) Liquid
B)Solid
C)Gas
Answer:
it contains the electricity of the battery
Explanation:
Milk
Explanation:
because milk is very thick youknow here I go
<u>Answer:</u> The concentration of
comes out to be 0.16 M.
<u>Explanation:</u>
To calculate the concentration of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

Hence, the concentration of
comes out to be 0.1862 M.