Answer:
it depends ether people can give you hope or you can have hope
Explanation:
Answer:
a. 0.342 kg-m² b. 2.0728 kg-m²
Explanation:
a. Since the skater is assumed to be a cylinder, the moment of inertia of a cylinder is I = 1/2MR² where M = mass of cylinder and r = radius of cylinder. Now, here, M = 56.5 kg and r = 0.11 m
I = 1/2MR²
= 1/2 × 56.5 kg × (0.11 m)²
= 0.342 kgm²
So the moment of inertia of the skater is
b. Let the moment of inertia of each arm be I'. So the moment of inertia of each arm relative to the axis through the center of mass is (since they are long rods)
I' = 1/12ml² + mh² where m = mass of arm = 0.05M, l = length of arm = 0.875 m and h = distance of center of mass of the arm from the center of mass of the cylindrical body = R/2 + l/2 = (R + l)/2 = (0.11 m + 0.875 m)/2 = 0.985 m/2 = 0.4925 m
I' = 1/12 × 0.05 × 56.5 kg × (0.875 m)² + 0.05 × 56.5 kg × (0.4925 m)²
= 0.1802 kg-m² + 0.6852 kg-m²
= 0.8654 kg-m²
The total moment of inertia from both arms is thus I'' = 2I' = 1.7308 kg-m².
So, the moment of inertia of the skater with the arms extended is thus I₀ = I + I'' = 0.342 kg-m² + 1.7308 kg-m² = 2.0728 kg-m²
Answer:
a₂ = m₁ / m₂ a₁
Explanation:
For this exercise we note that the attraction between the two stars is an action and reaction force, therefore it has the same magnitude, but it is applied to each of the bodies
Let's apply Newton's second law on the star 1
F₁ = m₁ a₁
Newton's second law in star 2
F₂ = m₂ a₂
| F₁ | = | F₂ |
m₁ a₁ = m₂ a₂
a₂ = m₁ / m₂ a₁
Answer:
Iron
Explanation:
H = mc∅
Above equation can be used here to find the answer to the question. this equation gives us the relationship between the heat energy supplied to a material and the temperature difference that the material would go through according to its mass.
here H is the Heat energy supplied to the material. m is the mass of the material. c is the specific heat capacity of the material and ∅ is the temperature difference applied to the material. we are given that H= 337,500J , m = 50 kg and ∅ = 15 °C. so from the equation now we can calculate the value of c. after calculating c we can find the material because c is an unique value for a particular material. no two materials have the same c value.
c = 337500/(50*15)
c = 450 J/(kg°C) - Iron (google the heat capacity value to find the answer Iron)
1. The temperature
2. The dissolved gases it contains
3. It’s chemical composition