Answer:
if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º
Explanation:
When a ray of light falls on a surface if this surface has a higher index than in the medium where the light travels, the reflected wave has a phase change of 180º this can be explained by Newton's third law, the light when arriving pushes the atoms of the medium that is more dense, and these atoms respond with a force of equal magnitude, but in the opposite direction.
When the fractional index is lower than that of the medium where the reflacted beam travels, notice a change in phase.
Also, when light penetrates the medium, it modifies its wavelength
λ = λ₀ / n
We take these two aspects into account, the condition for contributory interference is
d sin θ = (m + 1/2) λ
for destructive interference we have
d sin θ = m λ
in general this phenomenon is observed at 90º
2 d = (m +1/2) λ° / n
2nd = (m + ½) λ₀
You can see what is the electron configuration by looking at the layout of the periodic tables. the first shell will have a max of 2 electrons on it, once the first one is filled up a second is added with a max of 8 electrons on it and so on with the 8 as a max. so He, and H will only have them on the first shell but every horizontal row is a new valence or outer shell. so lets say for carbon look at the number in the upper left corner of the box will tell you the total number of electrons you will need. so start off with the first two electrons on the first shell. now you know that carbon needs 6 electrons in total, since you can only have a max of 2 on the first shell you need a second one so on the second one you will have to have the remaining 4. now elements are most stable when they have a full valence shell becuase those are the only electrons that will react with others. so if carbon has 4 it wants to either gain or lose 4 electrons so you could say that it would bond with 4H since each H will donate 1 electron to the C valence shell making all the H and C stable. CH4(methane)
Kinetic energy would increase sir.
The weight of the car in the picture of the computer screen is 9,800 Newton's.
Answer:the average kinetic energy is directly proportional to the temperature . When water freezes, the temperature decreases and therefore, the average kinetic energy will also decreases as well.
Explanation: