The minimum value of the coefficient of static friction between the block and the slope is 0.53.
<h3>Minimum coefficient of static friction</h3>
Apply Newton's second law of motion;
F - μFs = 0
μFs = F
where;
- μ is coefficient of static friction
- Fs is frictional force
- F is applied force
μ = F/Fs
μ = F/(mgcosθ)
μ = (250)/(50 x 9.8 x cos15)
μ = 0.53
Thus, the minimum value of the coefficient of static friction between the block and the slope is 0.53.
Learn more about coefficient of friction here: brainly.com/question/20241845
#SPJ1
Answer: Wernicke's aphasia
Explanation:
John recently suffered a blow to his head. Since then, he finds it difficult to comprehend what others say to him. He also finds it difficult to express his thoughts and cannot seem to find the right words to say while speaking. However, he can speak freely with proper syntax. In this scenario, John is most likely suffering from Wernicke's aphasia.
Wernicke's aphasia occurs when the leftward side of the middle of the brain is damaged or has been altered. An individual who suffers from Wernicke's aphasia will have difficulty in speaking in meaningful and coherent sentences or may have difficulty in understanding the speech of others.
Explanation:
(a)
Critical angle is the angle at the angle of refraction is 90°. After the critical angle, no refraction takes place.
Using Snell's law as:
Where,
is the angle of incidence
is the angle of refraction = 90°
is the refractive index of the refraction medium
is the refractive index of the incidence medium
Thus,
The formula for the calculation of critical angle is:
Where,
is the critical angle
(b)
No it cannot occur. It only occur when the light ray bends away from the normal which means that when it travels from denser to rarer medium.
The electromagnetic spectrum includes a continuous spectrum of wavelengths that include:
Radio waves, microwaves, infrared light, visible, ultraviolet, X-rays, gamma rays
The wavelength decreases from radio waves to gamma rays, whereas the energy increases along the same direction.
In the given example, radio waves have a lower energy and higher wavelength than visible light. The latter can be perceived by the human eye, whereas radio waves are not visible to the human eye.
1) They have colors = visible light
2) They can travel in a vacuum = both
3) They have energy = both
4) They’re used to learn about dust and gas clouds = radio waves
5) They’re used to find the temperature of stars = visible light
6)They’re invisible = radio waves