Since you already gave us the weight of the 2.5-kg box,
we don't even need to know what the distance is, just
as long as it doesn't change.
Look at the formula for the gravitational force:
F = G m₁ m₂ / R² .
If 'G', 'm₁' (mass of the Earth), and 'R' (distance from the Earth's center)
don't change, then the Force is proportional to m₂ ... mass of the box,
and you can write a simple proportion:
(6.1 N) / (2.5 kg) = (F) / (1 kg)
Cross-multiply: (6.1 N) (1 kg) = (F) (2.5 kg)
Divide each side by (2.5 kg): F = (6.1N) x (1 kg) / (2.5 kg) = 2.44 N .
A decrease in mass will decrease an objects weight because
weight = mass x gravitational constant
Answer:
19.3m/s
Explanation:
Use third equation of motion

where v is the velocity at halfway, u is the initial velocity, g is gravity (9.81m/s^2) and h is the height at which you'd want to find the velocity
insert values to get answer
![v^2-0^2=2(9.81m/s^2)(38/2)\\v^2=9.81m/s^2 *38\\v^2=372.78\\v=\sqrt[]{372.78} \\v=19.3m/s](https://tex.z-dn.net/?f=v%5E2-0%5E2%3D2%289.81m%2Fs%5E2%29%2838%2F2%29%5C%5Cv%5E2%3D9.81m%2Fs%5E2%20%2A38%5C%5Cv%5E2%3D372.78%5C%5Cv%3D%5Csqrt%5B%5D%7B372.78%7D%20%5C%5Cv%3D19.3m%2Fs)
Answer:
1.08 s
Explanation:
From the question given above, the following data were obtained:
Height (h) reached = 1.45 m
Time of flight (T) =?
Next, we shall determine the time taken for the kangaroo to return from the height of 1.45 m. This can be obtained as follow:
Height (h) = 1.45 m
Acceleration due to gravity (g) = 9.8 m/s²
Time (t) =?
h = ½gt²
1.45 = ½ × 9.8 × t²
1.45 = 4.9 × t²
Divide both side by 4.9
t² = 1.45/4.9
Take the square root of both side
t = √(1.45/4.9)
t = 0.54 s
Note: the time taken to fall from the height(1.45m) is the same as the time taken for the kangaroo to get to the height(1.45 m).
Finally, we shall determine the total time spent by the kangaroo before returning to the earth. This can be obtained as follow:
Time (t) taken to reach the height = 0.54 s
Time of flight (T) =?
T = 2t
T = 2 × 0.54
T = 1.08 s
Therefore, it will take the kangaroo 1.08 s to return to the earth.
Answer:
c. detecting the gravitational effect of an orbiting planet (The Wobble"") by looking for the Doppler shifts in the star's spectrum
Explanation:
In a solar system the mass of the star and planets affect each other's orbital movements. The center of gravity of a star and a planet is inside the star. This causes the star to be closer and farther from the Earth at different times. Due to this wobble the star appears to be red shifted when it is farther and blue shifted when it is closer.
When the mass of the planet is high, like a hot Jupiter it causes more wobble i.e., change in radial velocity. This makes it easier to detect the planet. The earliest hot Jupiter found by this method is the planet 51 Pegasi b.