Answer:
At 400 m the potential energy of the mountain climber doubled the initial value.
Explanation:
Given;
initial height of the mountain climber = 200 m
final height of the mountain climber, = 400 m
The potential energy of the mountain climber is calculated as;
Potential energy, P.E = mgh
At 200 m, P.E₁ = mg x 200 = 200mg
At 400 m, P.E₂ = mg x 400 = 400mg
Then, at 400 m, P.E₂ = 2 x 200mg = 2 x P.E₁
Therefore, at 400 m the potential energy of the mountain climber doubled the initial value.
A higher temperature, stiffer materials, and less dense materials increase the speed of sound.
Simple: if a charge is positive, it loses electrons. If negative, it gains.
Answer:
The impulse transferred to the nail is 0.01 kg*m/s.
Explanation:
The impulse (J) transferred to the nail can be found using the following equation:

Where:
: is the final momentum
: is the initial momentum
The initial momentum is given by:

Where 1 is for the hammer and 2 is for the nail.
Since the hammer is moving down (in the negative direction):
And because the nail is not moving:

Now, the final momentum can be found taking into account that the hammer remains in contact with the nail during and after the blow:
Since the hammer and the nail are moving in the negative direction:
=
= -9.7 m/s
Finally, the impulse is:

Therefore, the impulse transferred to the nail is 0.01 kg*m/s.
I hope it helps you!