Given Information:
Wavelength of the red laser = λr = 632.8 nm
Distance between bright fringes due to red laser = yr = 5 mm
Distance between bright fringes due to laser pointer = yp = 5.14 mm
Required Information:
Wavelength of the laser pointer = λp = ?
Answer:
Wavelength of the laser pointer = λp = ?
Explanation:
The wavelength of the monochromatic light can be found using young's double slits formula,
y = Dλ/d
y/λ = D/d
Where
λ is the wavelength
y is the distance between bright fringes.
d is the double slit separation distance
D is the distance from the slits to the screen
For the red laser,
yr/λr = D/d
For the laser pointer,
yp/λp = D/d
Equating both equations yields,
yr/λr = yp/λp
Re-arrange for λp
λp = yp*λr/yr
λp = (5*632.8)/5.14
λp = 615.56 nm
Therefore, the wavelength of the small laser pointer is 615.56 nm.
The correct answer is
<span>C) Q
In fact, the symbol Q represents the heat, which is the form of energy transferred from a hot object to a cooler object. Heat generally refers to the energy related to the motion of the particles, and it is related to the temperature of an object: the higher the temperature of an object, the faster the particles of the object move, and so the object can transfer more energy (as heat) to other objects with lower temperature.</span>
Because gravity is constant
<span>the only force acting in free-fall is gravity which points downward at 9.8 m/s</span>
The best and most correct answer among the choices provided by your question is the fourth option or letter D. Trade winds blow towards the equator because t<span>he Equator receives the most heat energy.
</span>The surface air that flows from these subtropical high-pressure belts toward the Equator is deflected toward the west in both hemispheres by the Coriolis effect. These winds blow<span> predominantly from the northeast in the Northern Hemisphere and from the southeast in the Southern Hemisphere.
I hope my answer has come to your help. Thank you for posting your question here in Brainly.
</span>