1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nikdorinn [45]
4 years ago
14

The Number above the elements symobls is the elements atomic number .

Physics
1 answer:
Anna11 [10]4 years ago
4 0

Answer:

correct

Explanation:

the atomic number is located top left of the atomic symbol given

You might be interested in
Complete this equation that represents the process of nuclear fission.
tekilochka [14]

Answer:

A: 146

B: 56

Explanation:

5 0
3 years ago
Read 2 more answers
Let r denote the distance between the center of the earth and the center of the moon. What is the magnitude of the acceleration
stepan [7]

Answer:

The magnitude of the acceleration ae of the earth due to the gravitational pull of the moon is \mathbf{3.3187\times10^{-5}}\frac{m}{s^{2}}

Explanation:

By Newton's gravitational law, the magnitude of the gravitational force between two objects is:

F=G\frac{Mm}{r^{2}}(1)

With G the gravitational constant, M the mass of earth, m the mass of the moon and r the distance between the moon and the earth, a quick search on physics books or internet websites give us the values:

M=5.972\times10^{24}\,kg

m=7.34767309\times10^{22}\,kg

r=384400\,km

G=6.674\times10^{-11}\,\frac{N\,m^{3}}{kg^{2}}

Using those values on (1)

F=(6.674\times10^{-11})*\frac{(5.972\times10^{24})(7.34767309\times10^{22})}{(384400\times10^{3})^{2}}

F\approx1.98193\times10^{20}N

Now, by Newton's second Law we can find the acceleration of earth ae due moon's pull:

F=M*ae\Longrightarrow ae=\frac{F}{M}=\frac{1.98193\times10^{20}}{5.972\times10^{24}}\approx\mathbf{3.3187\times10^{-5}}

6 0
4 years ago
The picture shows a loop of wire rotating in a magnetic field in a generator. Determine the direction of the current through the
BaLLatris [955]
I believe the answer is b
3 0
3 years ago
Read 2 more answers
May you help me answer this​
Firdavs [7]

1) See three Kepler laws below

2a) Acceleration is 2.2 m/s^2

2b) Tension in the string: 27.4 N

3a) Kinetic energy is the energy of motion, potential energy is the energy due to the position

3b) The kinetic energy of the object is 2.25 J

Explanation:

1)

There are three Kepler's law of planetary motion:

  1. 1st law: the planets orbit the sun in elliptical orbits, with the Sun located at one of the 2 focii
  2. 2nd law: a segment connecting the Sun with each planet sweeps out equal areas in equal time intervals. A direct consequence of this is that, when a planet is further from the sun, it travels slower, and when it is closer to the sun, it travels faster
  3. 3rd law: the square of the period of revolution of a planet around the sun is directly proportional to the cube of the semi-major axis of its orbit. Mathematically, T^2 \propto r^3, where T is the period of revolution and r is the semi-major axis of the orbit

2a)

To solve the problem, we have to write the equation of motions for each block along the direction parallel to the incline.

For the block on the right, we have:

M g sin \theta - T = Ma (1)

where

Mg sin \theta is the component of the weight of the block parallel to the incline, with

M = 8.0 kg (mass of the block)

g=9.8 m/s^2 (acceleration of gravity)

\theta=35^{\circ}

T = tension in the string

a = acceleration of the block

For the block on the left, we have similarly

T-mg sin \theta = ma (2)

where

m = 3.5 kg (mass of the block)

\theta=35^{\circ}

From (2) we get

T=mg sin \theta + ma

Substituting into (1),

M g sin \theta - mg sin \theta - ma = Ma

Solving for a,

a=\frac{M-m}{M+m}g sin \theta=\frac{8.0-3.5}{8.0+3.5}(9.8)(sin 35^{\circ})=2.2 m/s^2

2b)

The tension in the string can be calculated using the equation

T=mg sin \theta + ma

where

m = 3.5 kg (mass of lighter block)

g=9.8 m/s^2

\theta=35^{\circ}

a=2.2 m/s^2 (acceleration found in part 2)

Substituting,

T=(3.5)(9.8)(sin 35^{\circ}) +(3.5)(2.2)=27.4 N

3a)

The kinetic energy of an object is the energy due to its motion. It is calculated as

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

The potential energy is the energy possessed by an object due to its position in a gravitational field. For an object near the Earth's surface, it is given by

U=mgh

where

m is the mass of the object

g is the strength of the gravitational field

h is the heigth of the object relative to the ground

3b)

The kinetic energy of an object is given by

K=\frac{1}{2}mv^2

where

m is the mass of the object

v is its speed

For the object in this problem,

m = 500 g = 0.5 kg

v = 3 m/s

Substituting, we find its kinetic energy:

K=\frac{1}{2}(0.5)(3)^2=2.25 J

Learn more about acceleration and forces:

brainly.com/question/11411375

brainly.com/question/1971321

brainly.com/question/2286502

brainly.com/question/2562700

And about kinetic energy:

brainly.com/question/6536722

#LearnwithBrainly

7 0
4 years ago
Oceanographers use submerged sonar systems, towed by a cable from a ship, to map the ocean floor. In addition to their downward
KATRIN_1 [288]

Answer:

Tension in the cable is T = 16653.32 N

Explanation:

Give data:

Cross section Area A = 1.3 m^2

Drag coefficient CD = 1.2

Velocity V = 4.3 m/s

Angle made by cable with horizontal  =30 degree

Density \rho \ of\  water= 1000 kg/m3

 Drag force FD is given as

F_{D} = \fracP{1}{2} \rho v^{2} C_{D} A

        = 0.5\times 1000\times 4.32\times  1.2\times 1.3

Drag force = 14422.2 N acting opposite to the motion

As cable made angle  of 30 degree with horizontal  thus horizontal component is take into action to calculate drag force

TCos30 = F_D

T = \frac{F_D}{cos30}

T =\frac{ 14422.2}{cos 30}

T = 16653.32 N

7 0
3 years ago
Other questions:
  • A charge Q = 1.96 10-8 C is surrounded by an equipotential surface with a surface area of 1.18 m2. what is the electric potentia
    8·1 answer
  • What is one way to increase the amplitude of a wave in a medium
    15·1 answer
  • A nation undergoing the transition from undeveloped to industrialized is commonly dependent on this to supply its energy needs.
    14·2 answers
  • Hardness is defined as calcium and magnesium ion content. Since most hardness iscaused by carbonate mineral deposits and does no
    13·1 answer
  • In the graph above, what is the instantaneous speed of the object after the first five seconds?
    13·1 answer
  • Researchers want to see if college students are more committed to their fraternity after going through a hazardous hazing ritual
    9·1 answer
  • The acceleration due to gravity is -9.8 m/s^2. What variable is dedicated to this constant?
    14·1 answer
  • If you lift a 80 N book 50 cm off the floor, how much work did you do?
    8·1 answer
  • What are some examples of electromagnetic energy and what are the different types of electromagnetic energy?
    6·1 answer
  • Which waves have oscillations parallel to their direction of motion?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!