Answer:
endurance length is 236.64 MPa
Explanation:
data given:
d = 37.5 mm
Sut = 760MPa
endurance limit is
Se = 0.5 Sut
= 0.5*760 = 380 MPa
surface factor is
Ka = a*Sut^b
where
Sut is ultimate strength
for AISI 1040 STEEL
a = 4.51, b = -0.265
Ka = 4.51*380^{-0.265}
Ka = 0.93
size factor is given as
Kb =1.29 d^{-0.17}
Kb = 0.669
Se = Sut *Ka*Kb
= 380*0.669*0.93
Se = 236.64 MPa
therefore endurance length is 236.64 MPa
Answer:
Engineering careers. If you want to stay in engineering, your job opportunities are very much linked to your degree type, and you probably know what many of them are already. ...
Consulting. ...
Technical writing. ...
Business. ...
Investment banking. ...
Law. ...
Manufacturing and production. ...
Logistics and supply chain.
Explanation:
Answer:
Hey smith please see attachments for answer:
Please rate me good.
The attachments will provide you a detailed answer
Explanation:
Answer:
a) 
b) 
c) 
d) 
Explanation:
Non horizontal pipe diameter, d = 25 cm = 0.25 m
Radius, r = 0.25/2 = 0.125 m
Entry temperature, T₁ = 304 + 273 = 577 K
Exit temperature, T₂ = 284 + 273 = 557 K
Ambient temperature, 
Pipe length, L = 10 m
Area, A = 2πrL
A = 2π * 0.125 * 10
A = 7.855 m²
Mass flow rate,

Rate of heat transfer,

a) To calculate the convection coefficient relationship for heat transfer by convection:

Note that we cannot calculate the heat loss by the pipe to the environment without first calculating the surface temperature of the pipe.
c) The surface temperature of the pipe:
Smear coefficient of the pipe, 

b) Heat loss from the pipe to the environment:

d) The required fan control power is 25.125 W as calculated earlier above
Answer:
goodman = 0.694
life of beam = 211597
Explanation:
alternating stress = 48 kpsi
mean stress = 24 kpsi
ultimate strength = 100 kpsi
endurance limit = 40 kpsi
goodman:
= 
= 
= 0.24 + 1.2 = 
N = 1/1.44
N = 0.694
2. check attachment for diagram
Log(N)-3/3 = log90 - log48/log90 - log40
Log(N)-3/3 = 0.77517
Log N = 5.325509
N = 10^(5.325509)
N = 211597