Betelgeuse is one of the largest known stars and is probably at least the size of the orbits of Mars or Jupiter around the sun. That's a diameter about 700 times the size of the Sun or 600 million miles. For a star it has a rather low surface temperature (6000 F compared to the Sun's 10,000 F).
Explanation:
<h2> Answers</h2>
1.Electromagnetic waves
2.Electromagnetic radiation
3.Electromagneticwaves
Current is defined as the rate of charge flowing a point every second. Having a current of 1 Ampere signifies 1 Coulomb is flowing in a circuit every second. It is measured by the use of an ammeter which is positioned in series to the component to be measured. The current in the problem is calculated as follows:
I = 2.0 x 10^-4 C / 5.0 x 10^-5 s
<span>I = 4 A</span>
1 pound ≈ 0.4536 kg
170 pounds ≈ 170 * 0.4536 kg
≈ 77.112 kg
For the answer to the question above, first find out the gradient.
<span>m = rise/run </span>
<span>=(y2-y1)/(x2-x1) </span>
<span>the x's and y's are the points given: "After three hours, the velocity of the car is 53 km/h. After six hours, the velocity of the car is 62 km/h" </span>
<span>(x1,y1) = (3,53) </span>
<span>(x2,y2) = (6,62) </span>
<span>sub values back into the equation </span>
<span>m = (62-53)/(6-3) </span>
<span>m = 9/3 </span>
<span>m = 3 </span>
<span>now we use a point-slope form to find the the standard form </span>
<span>y-y1 = m(x-x1) </span>
<span>where x1 and y1 are any set of point given </span>
<span>y-53 = 3(x-3) </span>
<span>y-53 = 3x - 9 </span>
<span>y = 3x - 9 + 53 </span>
<span>y = 3x + 44 </span>
<span>y is the velocity of the car, x is the time.
</span>I hope this helps.