Answer:
Final velocity v=19.83 m/sec
Explanation:
We have given initial velocity u =5.13 m/sexc
Acceleration of automobile 
Time t =4.9 sec
We have to find the final velocity v
According to first law of motion v = u+at ,here v is the final velocity , a is acceleration and t is time
So 
So the final velocity is 19.83 m/sec
Answer:
v = 54 m/s
Explanation:
Given,
The maximum height of the flight of golf ball, h = 150 m
The velocity at height h, u = 0
The velocity of the golf ball right before it hits the ground, v = ?
Using the III equations of motion
<em> v² = u² + 2gh</em>
Substituting the given values in the above equation,
v² = 0 + 2 x 9.8 x 150 m
= 2940
v = 54 m/s
Hence, the speed of the golf ball right before it hits the ground, v = 54 m/s
Answer:

Explanation:
We can assume this problem as two concentric spherical metals with opposite charges.
We have also to take into account the formulas for the electric field and the capacitance. Hence we have

Where k is the Coulomb's constant. Furthermore, by taking into account the expression for the potential and by integrating
![dV=Edr\\\\V=\int_{R_1}^{R_2}Edr=-\int_{R_1}^{R_2}\frac{kQ}{r^2}dr\\\\V=kQ[\frac{1}{R_2}-\frac{1}{R_1}]](https://tex.z-dn.net/?f=dV%3DEdr%5C%5C%5C%5CV%3D%5Cint_%7BR_1%7D%5E%7BR_2%7DEdr%3D-%5Cint_%7BR_1%7D%5E%7BR_2%7D%5Cfrac%7BkQ%7D%7Br%5E2%7Ddr%5C%5C%5C%5CV%3DkQ%5B%5Cfrac%7B1%7D%7BR_2%7D-%5Cfrac%7B1%7D%7BR_1%7D%5D)
Hence, the capacitance is
![C=\frac{1}{k[\frac{1}{R_2}-\frac{1}{R_1}]}](https://tex.z-dn.net/?f=C%3D%5Cfrac%7B1%7D%7Bk%5B%5Cfrac%7B1%7D%7BR_2%7D-%5Cfrac%7B1%7D%7BR_1%7D%5D%7D)
but R1=a and R2=b

HOPE THIS HELPS!!