Computer simulation is useful because it helps in the prediction of what will likely happen in the future using data from past events.
<h3>What is computer simulation?</h3>
- This is the use of computer models to represents a hypothetical scenarios that are likely to be obtained in the real world.
Computer simulations are useful in studying phenomena in the universe because they help us to achieve the followings;
- It helps in the prediction of what will likely happen in the future using data from past events.
- It saves cost and time of carrying out actual experiments.
- It can help prevent a disaster that may occur in the future.
Learn more about computer simulations here: brainly.com/question/22214039
Answer:
90 degrees
Explanation:
the answer is 90 because angle a has a square on the angle which means it is 90 degrees
Answer:
Closely fits into the connector.
Explanation:
It's one of the steps used for the splicing of aluminium conductors in the underground connections. Where we do the strip insulation to splice the conductors by using compression type connectors.
An element would be the type of substance that only contains one kind of matter.
Answer:
1) λ = 0.413 m
, 2)v = 25,213 m / s
, 3) T = 0.216 N
, 4) m = 22.04 10-3 kg
Explanation:
1) The resonance occurs when the traveling wave bounces at the ends and the two waves are added, the ends as they are fixed have a node, the wavelength and the length of the string are related
λ = 2L / n n = 1, 2, 3 ...
In this case L = 0.62 m and n = 3
Let's calculate
λ = 2 0.62 / 3
λ = 0.413 m
2) the velocity related to wavelength and frequency
v = λ f
v = 0.413 61
v = 25,213 m / s
3) let's use the equation
v = √T /μ
T = v² μ
T = 25,213² 3.4 10⁻⁴
T = 0.216 N
4) the rope tension is proportional to the hanging weight
T-W = 0
T = W
W = m g
m = W / g
m = 0.216 / 9.8
m = 22.04 10-3 kg
5) n = 2
λ = 2 0.62 / 2
λ = 0.62 m
6) v = λ f
v = 0.62 61
v = 37.82 m / s
7) T = v² μ
T = 37.82² 3.4 10⁻⁴
T = 0.486 N
8) m = W / g
m = 0.486 / 9.8
m = 49.62 10⁻³ kg
9) n = 1
λ = 2 0.62
λ = 1.24 m
v = 1.24 61
v = 75.64 m / s
T = v² miu
T = 75.64² 3.4 10⁻⁴
T = 2.572 10⁻² N
m = 2.572 10⁻² / 9.8
m = 262.4 10⁻³ kg