Your answer is C) The speed of sound is higher in solids than in liquids.
Answer:
a) The distance of spectator A to the player is 79.2 m
b) The distance of spectator B to the player is 43.9 m
c) The distance between the two spectators is 90.6 m
Explanation:
a) Knowing the time it takes the sound to reach both spectators, we can calculate their position relative to the player, using this equation:
x = v * t
where:
x = position of the spectators
v = speed of sound
t = time
Then, the position for spectator A relative to the player is:
x = 343 m/s * 0.231 s = 79.2 m
b)For spectator B:
x = 343 m/s * 0.128 s
x = 43.9 m
The distance of spectator A and B to the player is 79.2 m and 43.9 m respectively.
c) To calculate the distance between the spectators, please see the attached figure. Notice that the distance between the spectators is the hypotenuse of the triangle formed by the sightline of both. We already know the longitude of the two sides. Then, using Pythagoras theorem:
(Distance AB)² = A² + B²
(Distance AB)² = (79.2 m)² + (43.9 m)²
Distance AB = 90. 6 m
My guess would be because the gravity from the Earth's core is constantly pulling the ball towards the ground. It's like the moon. Why doesn't the moon just float away in space? Because Earth's gravitational pull keeps it rotating around it. Therefore, the ball will always be pulled towards the core which keeps it from from rolling forever due to friction. But i may be wrong, even though this a quite a good answer, hope it is right!
Answer:
A+B; 5√5 units, 341.57°
A-B; 5√5 units, 198.43°
B-A; 5√5 units, 18.43°
Explanation:
Given A = 5 units
By vector notation and the axis of A, it is represented as -5j
B = 3 × 5 = 15 units
Using the vector notations and the axis, B is +15i. The following vectors ate taking as the coordinates of A and B
(a) A + B = -5j + 15i
A+B = 15i -5j
|A+B| = √(15)²+(5)²
= 5√5 units
∆ = arctan(5/15) = 18.43°
The angle ∆ is generally used in the diagrams
∆= 18.43°
The direction of A+B is 341.57° based in the condition given (see attachment for diagrams
(b) A - B = -5j -15i
A-B = -15i -5j
|A-B|= √(15)²+(-5)²
|A-B| = √125
|A-B| = 5√5 units
The direction is 180+18.43°= 198.43°
See attachment for diagrams
(c) B-A = 15i -( -5j) = 15i + 5j
|B-A| = 5√5 units
The direction is 18.43°
See attachment for diagram