You said that she's losing 1.9 m/s of her speed every second.
So it'll take
(6 m/s) / (1.9 m/s²) = 3.158 seconds (rounded)
to lose all of her initial speed, and stop.
Explanation:
Single slit diffraction
Diffraction is the phenomenon of spreading out of waves as they pass through an aperture or around objects. Diffraction occurs when the size of the aperture or obstacle is of the same order of magnitude as the wavelength of the incident wave. For very small aperture sizes, the vast majority of the wave is blocked. in case of large apertures the wave passes by or through the obstacle without any significant diffraction.
Answer:
539 kPa
Explanation:
Pressure equals density times acceleration of gravity times depth.
P = ρgh
Water has a density of 1000 kg/m³, and acceleration of gravity is 9.8 m/s².
P = (1000 kg/m³) (9.8 m/s²) (55.0 m)
P = 539,000 Pa
P = 539 kPa
Answer: 2561.7 pounds
Explanation:
If we assume the total weight of an airplane (in pounds units) as a <u>linear function</u> of the amount of fuel in its tank (in gallons) and we make a Weight vs amount of fuel graph, which resulting slope is 5.7, we can use the slope equation of the line:
(1)
Where:
is the slope of the line
is the airplane weight with 51 gallons of fuel in its tank (assuming we chose the Y axis for the airplane weight in the graph)
is the fuel in airplane's tank for a total weigth of 2390.7 pounds (assuming we chose the X axis for the a,ount of fuel in the tank in the graph)
This means we already have one point of the graph, which coordinate is:

Rewritting (1):
(2)
As Y is a function of X:
(3)
Substituting the known values:
(4)
(5)
(6)
Now, evaluating this function when X=81 (talking about the 81 gallons of fuel in the tank):
(7)
(8) This means the weight of the plane when it has 81 gallons of fuel in its tank is 2561.7 pounds.