Answer:
Explanation:
You can think of pH as "parts Hydrogen ion," but remember that the pH scale is "backwards." The pH scale ranges from 0 to 14, with zero being the most acidic (highest concentration of H+) and 14 being the most basic.
Answer:
Pulmonary oedema can be caused by lung disease, but when heart failure is more serious, the pressure of blood in the lungs builds-up, pushing fluid into the air sacs. This is how heart failure can lead to respiratory failure. People with pulmonary oedema will feel breathless, weak and unwell.
The reaction is second order in AB, so:
![v=k[AB]^2](https://tex.z-dn.net/?f=v%3Dk%5BAB%5D%5E2)
. In the statement, we obtain that
![[AB]=0.104~M](https://tex.z-dn.net/?f=%5BAB%5D%3D0.104~M)
and, at 25 ºC,

. Then:
![v=k[AB]^2\\\\ v=0.0164\cdot0.104^2\\\\ v=0.0164\cdot0.010816\\\\ v\approx0.000177=1.77\times10^{-4}~mol/s](https://tex.z-dn.net/?f=v%3Dk%5BAB%5D%5E2%5C%5C%5C%5C%0Av%3D0.0164%5Ccdot0.104%5E2%5C%5C%5C%5C%0Av%3D0.0164%5Ccdot0.010816%5C%5C%5C%5C%0Av%5Capprox0.000177%3D1.77%5Ctimes10%5E%7B-4%7D~mol%2Fs)
Now, we'll calculate the number of mols of the products in the gas. Using the Ideal Gas Law:


Since each AB molecule forms one of A and one of B,

. Hence:

.
We'll consider that in the beginning there was not A or B. So,

. Furthermore, since the ratio of AB to A and to B is 1:1,

.
Calculating the time by the expression of velocity: