1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
VLD [36.1K]
3 years ago
11

A lacrosse ball that is thrown straight upwards reaches a maximum height of 4.5 m. At what initial velocity was it thrown? (note

: final velocity, v = 0, at the top).
Physics
1 answer:
shtirl [24]3 years ago
5 0

Answer:

The initial velocity was 9.39 m/s

Explanation:

<em>Lets explain how to solve the problem</em>

The ball is thrown straight upward with initial velocity u

The ball reaches a maximum height of 4.5 m

At the maximum height velocity v = 0

The acceleration of gravity is -9.8 m/s²

We need to find the initial velocity

The best rule to find the initial velocity is <em>v² = u² + 2ah</em>, where v is

the final velocity, u is the initial velocity, a is the acceleration of

gravity and h is the height

⇒ v = 0 , h = 4.5 m , a = -9.8 m/s²

⇒ 0 = u² + 2(-9.8)(4.5)

⇒ 0 = u² - 88.2

Add 88.2 to both sides

⇒ 88.2 = u²

Take square root for both sides

⇒ u = 9.39 m/s

<em>The initial velocity was 9.39 m/s</em>

You might be interested in
A point charge Q is held at a distance r from the center of a dipole that consists of two charges ±q separated by a distance s.
marishachu [46]

Answer:

a) the magnitude of the force is

F= Q(\frac{kqs}{r^3}) and where k = 1/4πε₀

F = Qqs/4πε₀r³

b)  the magnitude of the torque on the dipole

τ = Qqs/4πε₀r²

Explanation:

from coulomb's law

E = \frac{kq}{r^{2} }

where k = 1/4πε₀

the expression of the electric field due to dipole at a distance r is

E(r) = \frac{kp}{r^{3} } , where p = q × s

E(r) = \frac{kqs}{r^{3} } where r>>s

a) find the magnitude of force due to the dipole

F=QE

F= Q(\frac{kqs}{r^3})

where k = 1/4πε₀

F = Qqs/4πε₀r³

b) b) magnitude of the torque(τ) on the dipole is dependent on the perpendicular forces

τ = F sinθ × s

θ = 90°

note: sin90° = 1

τ = F × r

recall  F = Qqs/4πε₀r³

∴ τ = (Qqs/4πε₀r³) × r

τ = Qqs/4πε₀r²

8 0
3 years ago
A red car passes a blue car. Which is true?
Marrrta [24]
D. The red car is moving faster than the blue car
4 0
3 years ago
A particle moves along a straight line. Its position at any instant is given by x = 32t− 38t^3/3 where x is in metre and t in se
Rudik [331]

Answer:

The acceleration of the object is -69.78 m/s²

Explanation:

Given;

postion of the particle:

x = 32t - 38\frac{t^3}{3} \\\\

The velocity of the particle is calculated as the change in the position of the  particle with time;

v = \frac{dx}{dt} = 32 - 38t^2\\\\when \ the \ particle \ is \ at \ rest, \ v = 0\\\\32-38t^2 = 0\\\\38t^2 = 32\\\\t^2 = \frac{32}{38} \\\\t = \sqrt{\frac{32}{38} } \\\\t = 0.918 \ s

Acceleration is the change in velocity with time;

a = \frac{dv}{dt} = -76t\\\\recall , \ t = 0.918 \ s\\\\a = -76(0.918)\\\\a = -69.78 \ m/s^2

4 0
3 years ago
Vector A has components Ax=1.30cm, Ay= 2.25cm; vector B has components Bx=4.10cm, By=-3.75cm.
geniusboy [140]
We  are given with the x and y components of Vector A and B. In this case, we compute the resultant of both components of each vector. The vector is equal to the square root of the sum of the squares of the components. A is equal to 2.60 cm. B is equal to 5.56 cm. B is found in quadrant Iv and has an angle of 42.447 degrees as a terminal angle. A has an angle of 59.98 degrees. 
a. 5.6082 < -15.53 degreesc. 6.63 <-64.98 degreesb. x = 6.63 cos -64.98 degrees = 2.80   y = 6.63 sin -64.98 degrees = -6.00
6 0
3 years ago
A resistor is connected in series with an AC source that provides a sinusoidal voltage of v of t is equal to V times cosine of b
nekit [7.7K]
<h2>Answer:</h2>

In circuits, the average power is defined as the average of the instantaneous power  over one period. The instantaneous power can be found as:

p(t)=v(t)i(t)

So the average power is:

P=\frac{1}{T}\intop_{0}^{T}p(t)dt

But:

v(t)=v_{m}cos(\omega t) \\ \\ i(t)=i_{m}cos(\omega t)

So:

P=\frac{1}{T}\intop_{0}^{T}v_{m}cos(\omega t)i_{m}cos(\omega t)dt \\ \\ P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}cos^{2}(\omega t)dt \\ \\ But: cos^{2}(\omega t)=\frac{1+cos(2\omega t)}{2}

P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}(\frac{1+cos(2\omega t)}{2} )dt \\\\P=\frac{v_{m}i_{m}}{T}\intop_{0}^{T}[\frac{1}{2}+\frac{cos(2\omega t)}{2}]dt \\\\P=\frac{v_{m}i_{m}}{T}[\frac{1}{2}(t)\right|_0^T +\frac{sin(2\omega t)}{4\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2T}[(t)\right|_0^T +\frac{sin(2\omega t)}{2\omega} \right|_0^T] \\ \\ P=\frac{v_{m}i_{m}}{2}

In terms of RMS values:

V_{RMS}=V=\frac{v_{m}}{\sqrt{2}} \\ \\ I_{RMS}=I=\frac{i_{m}}{\sqrt{2}} \\ \\ Then: \\ \\ P=VI

7 0
3 years ago
Other questions:
  • Two football players are pushing a 60kg blocking sled across the field at a constant speed of 2.0 m/s. The coefficient of kineti
    9·1 answer
  • What three basic components are atoms made of?
    12·1 answer
  • What does a physicist study?
    14·1 answer
  • An astronomical telescope has an objective of diameter 20 cm with a focal length of 180 cm. the telescope is used with an eyepie
    11·1 answer
  • Which two statements about an electric motor are true?
    8·2 answers
  • ENERG
    9·2 answers
  • Where is 3cm on a ruler
    11·1 answer
  • Can someone please explain number 8?
    12·1 answer
  • A turntable is designed to acquire an angular velocity of 32.4 rev/s in 0.5 s, starting from rest.
    13·2 answers
  • Two forces one of 12N and another of 5N act on abody in such away that they makes an angel of 90 with each other, what is the re
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!