There are two naturally occurring isotopes of gallium: mass of Ga-69 isotope is 68.9256 amu and its percentage abundance is 60.11%, let the mass of other isotope that is Ga-71 be X, the percentage abundance can be calculated as:
%Ga-71=100-60.11=39.89%
Atomic mass of an element is calculated by taking sum of atomic masses of its isotopes multiplied by their percentage abundance.
Thus, in this case:
Atomic mass= m(Ga-69)×%(Ga-69)+X×%(Ga-71)
From the periodic table, atomic mass of Ga is 69.723 amu.
Putting the values,

Thus,

Rearranging,

Therefore, mass of Ga-71 isotope is 70.9246 amu.
Atomic number of C is 6. Hence, there are 6 electrons in carbon.
The electronic configuration of carbon is 1s2, 2s2, 2p2
Here, there are 2 unpaired electron. However, C2+ ions have 2 electrons less as compared to C.
Hence, electronic configuration of C 2+ ion is 1s2, 2s2. All the electrons are paired in this system. So there are no unpaired electrons in C 2+ ion.
A watering the plant. Plants wilt or droop when there’s not enough water because it helps reduce the amount of a surface area
Answer:
Explanation:
To solve the problem, we must know the kind of compounds we are dealing with.
For the first compound, P1 and second compound P2:
N O N O
Mass percent 64.17 35.73 47.23 52.79
Atomic mass 14 16 14 16
Number of
moles 64.17/14 35.73/16 47.23/14 52.79/16
4.58 2.23 3.37 3.30
Simplest
ratio 4.58/2.23 2.23/2.23 3.37/3.30 3.3/3.3
2 1 1 1
P1 compound is N₂O
P2 compound is NO
These are the compounds,
In N₂O = 28:16
NO = 14:16
This is the ratio of nitrogen to a fixed mass of oxygen for the two compounds.
Answer:
6.82 g H₂S
General Formulas and Concepts:
<u>Math</u>
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Chemistry</u>
<u>Atomic Structure</u>
<u>Stoichiometry</u>
- Using Dimensional Analysis
Explanation:
<u>Step 1: Define</u>
0.200 mol H₂S
<u>Step 2: Identify Conversions</u>
Molar Mass of H - 1.01 g/mol
Molar Mass of S - 32.07 g/mol
Molar Mass of H₂S - 2(1.01) + 32.07 = 34.09 g/mol
<u>Step 3: Convert</u>
- Set up:

- Multiply:

<u>Step 4: Check</u>
<em>Follow sig fig rules and round. We are given 3 sig figs.</em>
6.818 g H₂S ≈ 6.82 g H₂S