Answer : All of the above are valid expressions of the reaction rate.
Explanation :
The given rate of reaction is,

The expression for rate of reaction for the reactant :
![\text{Rate of disappearance of }NH_3=-\frac{1}{4}\times \frac{d[NH_3]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DNH_3%3D-%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5Cfrac%7Bd%5BNH_3%5D%7D%7Bdt%7D)
![\text{Rate of disappearance of }O_2=-\frac{1}{7}\times \frac{d[O_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20disappearance%20of%20%7DO_2%3D-%5Cfrac%7B1%7D%7B7%7D%5Ctimes%20%5Cfrac%7Bd%5BO_2%5D%7D%7Bdt%7D)
The expression for rate of reaction for the product :
![\text{Rate of formation of }NO_2=+\frac{1}{4}\times \frac{d[NO_2]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DNO_2%3D%2B%5Cfrac%7B1%7D%7B4%7D%5Ctimes%20%5Cfrac%7Bd%5BNO_2%5D%7D%7Bdt%7D)
![\text{Rate of formation of }H_2O=+\frac{1}{6}\times \frac{d[H_2O]}{dt}](https://tex.z-dn.net/?f=%5Ctext%7BRate%20of%20formation%20of%20%7DH_2O%3D%2B%5Cfrac%7B1%7D%7B6%7D%5Ctimes%20%5Cfrac%7Bd%5BH_2O%5D%7D%7Bdt%7D)
From this we conclude that, all the options are correct.
Answer:
4.75 is the equilibrium constant for the reaction.
Explanation:

Equilibrium concentration of reactants :
![[CO]=0.0590 M,[H_2O]=0.00600 M](https://tex.z-dn.net/?f=%5BCO%5D%3D0.0590%20M%2C%5BH_2O%5D%3D0.00600%20M)
Equilibrium concentration of products:
![[CO_2]=0.0410 M,[H_2]=0.0410 M](https://tex.z-dn.net/?f=%5BCO_2%5D%3D0.0410%20M%2C%5BH_2%5D%3D0.0410%20M)
The expression of an equilibrium constant is given by :
![K_c=\frac{[CO_2][H_2]}{[CO][H_2O]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BCO_2%5D%5BH_2%5D%7D%7B%5BCO%5D%5BH_2O%5D%7D)


4.75 is the equilibrium constant for the reaction.
the great size or extent of something
Answer:
A. Clear and Sunny
Explanation:
The answer would be A. Clear and Sunny. A high pressure system occurs where the air mass above the Earth is denser than in surrounding areas, and therefore exerts a higher force or pressure. They usually happen with li9ght winds. Using process of elimination, it could not be D. Warm and Stormy, C. Cloudy and Rainy, or B. Cold and Stormy because all have wet climates.
Explanation:
The main function of a leaf is to produce food for the plant by photosynthesis. Chlorophyll, the substance that gives plants their characteristic green colour, absorbs light energy.
I will be describing what each of these do to the plant.
- <u>Photosynthesis: </u>Photosynthesis is a process used by plants and other organisms to convert light energy into chemical energy that can later be released to fuel the organisms' activities.
- <u>Transpiration</u>: Transpiration is the process of water movement through a plant and its evaporation from aerial parts, such as leaves, stems and flowers. Water is necessary for plants but only a small amount of water taken up by the roots is used for growth and metabolism. The remaining 97–99.5% is lost by transpiration and guttation.
- <u>Guttation</u>: Guttation is the exudation of drops of xylem sap on the tips or edges of leaves of some vascular plants, such as grasses, and a number of fungi. Guttation is not to be confused with dew, which condenses from the atmosphere onto the plant surface. Guttation generally happens during the night time.
- <u>Storage</u>: A storage organ is a part of a plant specifically modified for storage of energy (generally in the form of carbohydrates) or water. Storage organs often grow underground, where they are better protected from attack by herbivores.
- <u>Defense</u>: The first line of defense in plants is an intact and impenetrable barrier composed of bark and a waxy cuticle. Both protect plants against herbivores. Other adaptations against herbivores include hard shells, thorns (modified branches), and spines (modified leaves).
<u>Hope this helps!</u>