Glottis I believe is the answer.
Answer:
Explanation:
A. The kinetic energy is the same as the initial potential energy:
PE = mgh = (215 N)(2.0 M) = 430 J
__
B. The velocity achieved by falling from a height h is given by ...
v = √(2gh)
v = √(2·9.8 m/s^2·2 m) = √(39.2 m^2/s^2)
v ≈ 6.26 m/s
Answer:
<u>Very low</u>
<u>Explanation:</u>
It is fair to say to a reasonable extent that there are very low chances that radio transmissions from Earth or messages sent on distant space probes will ever be received by living beings
.
Bear in mind that for years some scientists have believed without any substantial evidence that there are other living beings in distant space.
I'll be happy to solve the problem using the information that
you gave in the question, but I have to tell you that this wave
is not infrared light.
If it was a wave of infrared, then its speed would be close
to 300,000,000 m/s, not 6 m/s, and its wavelength would be
less than 0.001 meter, not 12 meters.
For the wave you described . . .
Frequency = (speed) / (wavelength)
= (6 m/s) / (12 m)
= 0.5 / sec
= 0.5 Hz .
(If it were an infrared wave, then its frequency would be
greater than 300,000,000,000 Hz.)
<span>The relationship between wavelength, frequency and energy of Electromagnetic Radiation is given by
E = hf = hc/lamba -------(1)
So from (1) there's a linear relationship between E and f. The higher the frequency, f, the higher the energy E.
Also from (1) it is obvious that the lower the wavelength, lambda, the higher the energy, E.
This means the answer is D.</span>