Answer:
The rate of heat conduction through the layer of still air is 517.4 W
Explanation:
Given:
Thickness of the still air layer (L) = 1 mm
Area of the still air = 1 m
Temperature of the still air ( T) = 20°C
Thermal conductivity of still air (K) at 20°C = 25.87mW/mK
Rate of heat conduction (Q) = ?
To determine the rate of heat conduction through the still air, we apply the formula below.


Q = 517.4 W
Therefore, the rate of heat conduction through the layer of still air is 517.4 W
-release of first light
-nucleosynthesis
-formation of stars and galaxies
<span>-formation of elementary particles</span>
When I went through with the math, the answer I came upon was:
<span>6.67 X 10^14 </span>
<span>Here is how I did it: First of all we need to know the equation. </span>
<span>c=nu X lamda </span>
<span>(speed of light) = (frequency)(wavelength) </span>
<span>(3.0 X 10^8 m/s) = (frequency)(450nm) </span>
<span>We want the answer in meters so we need to convert 450nm to meters. </span>
<span>450nm= 4.5 X 10^ -7 m </span>
<span>(3.0 X 10^8 m/s) = (frequency)(4.5 X 10^ -7 m) </span>
<span>Divide the speed of light by the wavelength. </span>
<span>(3.0 X 10^8m/s) / (4.5 X 10^ -7m) =6.67 X 10^ 14 per second or s- </span>
<span>Answer: 6.67 X 10^14 s- hope this helps</span>
The electric current passing through the bulb would be 3.3A
<u>Explanation:</u>
Given:
Electric charge, q = 800C
Time, t = 4 min
= 4 X 60 sec
= 240 sec
Electric current, I = ?
We know,

On substituting the value we get:

Thus, the electric current passing through the bulb would be 3.3A
There's no air in space, so there's no air resistance there.