Answer:
Mass = 24.36 g of N₂
Explanation:
The balance chemical equation for the decomposition of NaNO₃ is as follow;
2 NaN₃ → 2 Na + 3 N₂
Step 1: Find moles of N₂ as;
According to equation,
2 moles of NaNO₃ produces = 3 moles of N₂
So,
0.58 moles of NaNO₃ will produce = X moles of N₂
Solving for X,
X = 3 mol × 0.58 mol / 2 mol
X = 0.87 mol of N₂
Step 2: Calculate mass of N₂ as,
Mass = Moles × M.Mass
Mass = 0.87 mol × 28.01 g/mol
Mass = 24.36 g of N₂
Answer:
0.144M
Explanation:
First, let us write a balanced equation for the reaction. This is illustrated below:
HNO3 + KOH —> KNO3 + H20
From the equation,
nA = 1
nB = 1
From the question given, we obtained the following:
Ma =?
Va = 30.00mL
Mb = 0.1000M
Vb = 43.13 mL
MaVa / MbVb = nA/nB
Ma x 30 / 0.1 x 43.13 = 1
Cross multiply to express in linear form
Ma x 30 = 0.1 x 43.13
Divide both side by 30
Ma = (0.1 x 43.13) /30 = 0.144M
The molarity of the nitric acid is 0.144M
Answer:5
Explanation:(H3) is 3 (H3)2 is 5
Answer:
FADH2 is a reducing agent.
FAD is an oxidizing agent.
Explanation:
The full form of FAD is flavin adenine dinucleotide. It is mainly a redox-active coenzyme which is associated with the different proteins and is involved with the enzymatic reactions in the metabolism.
FAD is obtained by donating or accepting electrons.
In the citric acid cycle,
succinate + FAD → fumarate + 
Thus we see that FAD is an oxidizing agent while
is a reducing agent.
Identical electron configurations : K⁺ and Cl⁻
<h3>Further explanation </h3>
In an atom, there are levels of energy in the shell and sub-shell
This energy level is expressed in the form of electron configurations.
Charging electrons in the sub-shell uses the following sequence:
<em>1s², 2s², 2p⁶, 3s², 3p⁶, 4s², 3d¹⁰, 4p⁶, 5s², 4d¹⁰, 5p⁶, 6s², etc. </em>
S²⁻ : [Ne] 3s²3p⁶
Cl : [Ne] 3s²3p⁵
K⁺ : 1s² 2s² 2p⁶ 3s² 3p⁶
Cl⁻ : 1s² 2s² 2p⁶ 3s²3p⁶
S :[Ne] 3s²3p⁴
Ar : [Ne] 3s²3p⁶
Cl⁻ : 1s² 2s² 2p⁶ 3s²3p⁶
K : 1s² 2s² 2p⁶ 3s² 3p⁶4s¹