Answer:
Llegara a su destino a la 1:00 pm
Explanation:
Si el coche va a 90 km/h buscamos un numero q al multiplicarlo por 90 nos de 450. Entonces 90×5 = 450, si hacemos la cuenta desde las ocho de la mañana mas las 5 horas del viaje terminaria llegando a su destino a la 1:00 pm.
Answer:
doppler effect
Explanation:
When the relative motion of two bodies results in the wavelength becoming shorter this means that the bodies are getting closer. This is known as blue shift.
When the relative motion of two bodies results in the wavelength becoming longer this means that the bodies are getting farther. This is known as red shift.
Collectively this phenomenon is known as the Doppler effect.
Answer:
There are two different types of crust: thin oceanic crust that underlies the ocean basins, and thicker continental crust that underlies the continents. These two different types of crust are made up of different types of rock.
Explanation:
There ya go !
:) hoping this helped ya out
Answer:
a) f ’’ = f₀
, b) Δf = 2 f₀ 
Explanation:
a) This is a Doppler effect exercise, which we must solve in two parts in the first the emitter is fixed and in the second when the sound is reflected the emitter is mobile.
Let's look for the frequency (f ’) that the mobile aorta receives, the blood is leaving the aorta or is moving towards the source
f ’= fo
This sound wave is reflected by the blood that becomes the emitter, mobile and the receiver is fixed.
f ’’ = f’
where c represents the sound velocity in stationary blood
therefore the received frequency is
f ’’ = f₀
let's simplify the expression
f ’’ = f₀ \frac{c+v}{c-v}
f ’’ = f₀
b) At the low speed limit v <c, we can expand the quantity
(1 -x)ⁿ = 1 - x + n (n-1) x² + ...
f ’’ = fo
f ’’ = fo 
leave the linear term
f ’’ = f₀ + f₀ 2
the sound difference
f ’’ -f₀ = 2f₀ v/c
Δf = 2 f₀ 
<h2>K.E/P.E = m/k tan²φ x ω²</h2>
Explanation:
The given position of block x = x₀ cos(ωt + φ)
The velocity of block v = dx/dt = - x₀ sin(ωt + φ) x ω
The kinetic energy = 1/2 mv² = 1/2 m x₀² sin²(ωt + φ) x ω²
The potential energy of spring = 1/2 k x² , where k is the spring constant
Thus P.E = 1/2 x k x x₀² cos²(ωt + φ)
When t = 0
K.E = 1/2 m x₀²sin²φ x ω²
P.E = 1/2 k x₀² cos²φ
Dividing these , we have
K.E/P.E = m/k tan²φ x ω²