5. 36mph
6. PER-for each
7. 2000 divided by 330 equals 6.06 seconds
<span>The weight lifted by a machine to the applied force on a machine is called mechanical advantage.
This is written as Mechanical advantage, M. A, = load(weight)/effort.
So for 1) M.A = 2 and load = 2, 000lb = 8896.446N.
So 2 = 8896.446/ effort
Effort = 8896.446/2 = 4448.48
Similarly for M.A of 2, 000, 000 we have
Effort = 8896.446/ 2, 000, 000 = 0.004448</span>
Answer:
13.7m
Explanation:
Since there's no external force acting on the astronaut or the satellite, the momentum must be conserved before and after the push. Since both are at rest before, momentum is 0.
After the push

Where
is the mass of the astronaut,
is the mass of the satellite,
is the speed of the satellite. We can calculate the speed
of the astronaut:

So the astronaut has a opposite direction with the satellite motion, which is further away from the shuttle. Since it takes 7.5 s for the astronaut to make contact with the shuttle, the distance would be
d = vt = 1.83 * 7.5 = 13.7 m
The correct answer is b).