Sphere is that the circular objects in the two dimensional space (1) circle
(2) disk. Two dimensional space is a set of points and the distance of that point,The two points of Sphere that length and center.
Sphere can constructed as the named of surface form circle about any diameter. circle is the special type of the revolution replacing the circle,
sphere is the distance r is the radius of the ball and circle is the center of mathematical ball,as the center and the radius of the sphere is to respectively.
The ball and sphere has not be maintained mathematical references as a solid references. A sphere of any radius is centered at the number of zero.
Answer:
The photoelectric effect occurs only for frequencies above the cutoff frequency, regardless of the intensity.
Explanation:
The photoelectric effect occurs when light is shined on metals such as zinc beyond a certain frequency (the threshold frequency), which causes electrons to escape from the zinc. The electrons which are fleeing are called photo electrons.
Therefore photo electric effect is
The photoelectric effect occurs only for frequencies above the cutoff frequency, regardless of the intensity.
Answer:
5.5 m/s^2
Explanation:
I believe this is the answer > using the formula a= v-v0/t
Hope this helps!
Answer:
a) 
For this case we know the following values:




So then if we replace we got:

b) 
With 
And replacing we have:

And then the scattered wavelength is given by:

And the energy of the scattered photon is given by:

c) 
Explanation
Part a
For this case we can use the Compton shift equation given by:
For this case we know the following values:
So then if we replace we got:
Part b
For this cas we can calculate the wavelength of the phton with this formula:
With
And replacing we have:
And then the scattered wavelength is given by:
And the energy of the scattered photon is given by:
Part c
For this case we know that all the neergy lost by the photon neds to go into the recoiling electron so then we have this:
you take a length of ordinary wire, make it into a big loop, and lay it between the poles of a powerful, permanent horseshoe magnet. Now if you connect the two ends of the wire to a battery, the wire will jump up briefly.When an electric current starts to creep along a wire, it creates a magnetic field all around it. If you place the wire near a permanent magnet, this temporary magnetic field interacts with the permanent magnet's field.